Chapter 2. Installing MySQL

Table of Contents

2.1. General Installation Issues
2.1.1. Operating Systems Supported by MySQL
2.1.2. Choosing Which MySQL Distribution to Install
2.1.3. How to Get MySQL
2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
2.1.5. Installation Layouts
2.2. Standard MySQL Installation Using a Binary Distribution
2.3. Installing MySQL on Windows
2.3.1. Windows System Requirements
2.3.2. Choosing An Installation Package
2.3.3. Installing MySQL with the Automated Installer
2.3.4. Using the MySQL Installation Wizard
2.3.5. Using the Configuration Wizard
2.3.6. Installing MySQL from a Noinstall Zip Archive
2.3.7. Extracting the Install Archive
2.3.8. Creating an Option File
2.3.9. Selecting a MySQL Server type
2.3.10. Starting the Server for the First Time
2.3.11. Starting MySQL from the Windows Command Line
2.3.12. Starting MySQL as a Windows Service
2.3.13. Testing The MySQL Installation
2.3.14. Troubleshooting a MySQL Installation Under Windows
2.3.15. Upgrading MySQL on Windows
2.3.16. MySQL on Windows Compared to MySQL on Unix
2.4. Installing MySQL on Linux
2.5. Installing MySQL on Mac OS X
2.6. Installing MySQL on NetWare
2.7. Installing MySQL on Other Unix-Like Systems
2.8. MySQL Installation Using a Source Distribution
2.8.1. Source Installation Overview
2.8.2. Typical configure Options
2.8.3. Installing from the Development Source Tree
2.8.4. Dealing with Problems Compiling MySQL
2.8.5. MIT-pthreads Notes
2.8.6. Installing MySQL from Source on Windows
2.8.7. Compiling MySQL Clients on Windows
2.9. Post-Installation Setup and Testing
2.9.1. Windows Post-Installation Procedures
2.9.2. Unix Post-Installation Procedures
2.9.3. Securing the Initial MySQL Accounts
2.10. Upgrading MySQL
2.10.1. Upgrading from MySQL 5.0
2.10.2. Upgrading the Grant Tables
2.10.3. Copying MySQL Databases to Another Machine
2.11. Downgrading MySQL
2.12. Operating System-Specific Notes
2.12.1. Linux Notes
2.12.2. Mac OS X Notes
2.12.3. Solaris Notes
2.12.4. BSD Notes
2.12.5. Other Unix Notes
2.12.6. OS/2 Notes
2.13. Perl Installation Notes
2.13.1. Installing Perl on Unix
2.13.2. Installing ActiveState Perl on Windows
2.13.3. Problems Using the Perl DBI/DBD Interface

This chapter describes how to obtain and install MySQL:

  1. Determine whether your platform is supported. Please note that not all supported systems are equally suitable for running MySQL. On some platforms it is much more robust and efficient than others. See Section 2.1.1, “Operating Systems Supported by MySQL”, for details.

  2. Choose which distribution to install. Several versions of MySQL are available, and most are available in several distribution formats. You can choose from pre-packaged distributions containing binary (precompiled) programs or source code. When in doubt, use a binary distribution. We also provide public access to our current source tree for those who want to see our most recent developments and help us test new code. To determine which version and type of distribution you should use, see Section 2.1.2, “Choosing Which MySQL Distribution to Install”.

  3. Download the distribution that you want to install. For a list of sites from which you can obtain MySQL, see Section 2.1.3, “How to Get MySQL”. You can verify the integrity of the distribution using the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG.

  4. Install the distribution. To install MySQL from a binary distribution, use the instructions in Section 2.2, “Standard MySQL Installation Using a Binary Distribution”. To install MySQL from a source distribution or from the current development source tree, use the instructions in Section 2.8, “MySQL Installation Using a Source Distribution”.

    Note: If you plan to upgrade an existing version of MySQL to a newer version rather than installing MySQL for the first time, see Section 2.10, “Upgrading MySQL”, for information about upgrade procedures and about issues that you should consider before upgrading.

    If you encounter installation difficulties, see Section 2.12, “Operating System-Specific Notes”, for information on solving problems for particular platforms.

  5. Perform any necessary post-installation setup. After installing MySQL, read Section 2.9, “Post-Installation Setup and Testing”. This section contains important information about making sure the MySQL server is working properly. It also describes how to secure the initial MySQL user accounts, which have no passwords until you assign passwords. The section applies whether you install MySQL using a binary or source distribution.

  6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See Section 2.13, “Perl Installation Notes”.

2.1. General Installation Issues

Before installing MySQL, you should do the following:

  1. Determine whether or not MySQL runs on your platform.

  2. Choose a distribution to install.

  3. Download the distribution and verify its integrity.

This section contains the information necessary to carry out these steps. After doing so, you can use the instructions in later sections of the chapter to install the distribution that you choose.

2.1.1. Operating Systems Supported by MySQL

This section lists the operating systems on which you can expect to be able to run MySQL.

We use GNU Autoconf, so it is possible to port MySQL to all modern systems that have a C++ compiler and a working implementation of POSIX threads. (Thread support is needed for the server. To compile only the client code, the only requirement is a C++ compiler.) We use and develop the software ourselves primarily on Linux (SuSE and Red Hat), FreeBSD, and Sun Solaris (versions 8 and 9).

MySQL has been reported to compile successfully on the following combinations of operating system and thread package. Note that for many operating systems, native thread support works only in the latest versions.

Not all platforms are equally well-suited for running MySQL. How well a certain platform is suited for a high-load mission-critical MySQL server is determined by the following factors:

  • General stability of the thread library. A platform may have an excellent reputation otherwise, but MySQL is only as stable as the thread library it calls, even if everything else is perfect.

  • The capability of the kernel and the thread library to take advantage of symmetric multi-processor (SMP) systems. In other words, when a process creates a thread, it should be possible for that thread to run on a different CPU than the original process.

  • The capability of the kernel and the thread library to run many threads that acquire and release a mutex over a short critical region frequently without excessive context switches. If the implementation of pthread_mutex_lock() is too anxious to yield CPU time, this hurts MySQL tremendously. If this issue is not taken care of, adding extra CPUs actually makes MySQL slower.

  • General filesystem stability and performance.

  • If your tables are big, the ability of the filesystem to deal with large files at all and to deal with them efficiently.

  • Our level of expertise here at MySQL AB with the platform. If we know a platform well, we enable platform-specific optimizations and fixes at compile time. We can also provide advice on configuring your system optimally for MySQL.

  • The amount of testing we have done internally for similar configurations.

  • The number of users that have successfully run MySQL on the platform in similar configurations. If this number is high, the chances of encountering platform-specific surprises are much smaller.

Based on the preceding criteria, the best platforms for running MySQL at this point are x86 with SuSE Linux using a 2.4 or 2.6 kernel, and ReiserFS (or any similar Linux distribution) and SPARC with Solaris (2.7-9). FreeBSD comes third, but we really hope it joins the top club once the thread library is improved. We also hope that at some point we are able to include into the top category all other platforms on which MySQL currently compiles and runs, but not quite with the same level of stability and performance. This requires some effort on our part in cooperation with the developers of the operating systems and library components that MySQL depends on. If you are interested in improving one of those components, are in a position to influence its development, and need more detailed instructions on what MySQL needs to run better, send an email message to the MySQL internals mailing list. See Section 1.7.1, “MySQL Mailing Lists”.

Please note that the purpose of the preceding comparison is not to say that one operating system is better or worse than another in general. We are talking only about choosing an OS for the specific purpose of running MySQL. With this in mind, the result of this comparison would be different if we considered more factors. In some cases, the reason one OS is better than the other could simply be that we have been able to put more effort into testing and optimizing for a particular platform. We are just stating our observations to help you decide which platform to use for running MySQL.

2.1.2. Choosing Which MySQL Distribution to Install

When preparing to install MySQL, you should decide which version to use. MySQL development occurs in several release series, and you can pick the one that best fits your needs. After deciding which version to install, you can choose a distribution format. Releases are available in binary or source format.

2.1.2.1. Choosing Which Version of MySQL to Install

The first decision to make is whether you want to use a production (stable) release or a development release. In the MySQL development process, multiple release series co-exist, each at a different stage of maturity:

  • MySQL 5.2 is the next development release series and is the series in which new features are to be implemented. Alpha releases will be made available in the near future to allow widespread testing by interested users.

  • MySQL 5.1 is the current stable (production-quality) release series. New releases are issued for bugfixes only; no new features are being added that could effect stability.

  • MySQL 5.0 is the previous stable (production-quality) release series. New releases are issued for critical bugfixes and security fixes. No significant new features are to be added to this series.

  • MySQL 4.0 and 3.23 are the old stable (production-quality) release series. These versions are now retired, so new releases are issued only to fix extremely critical bugs (primarily security issues).

We do not believe in a complete freeze, as this also leaves out bugfixes and other fixes that must be done. By “somewhat frozen” we mean that we may add small things that should not affect anything that currently works in a production release. Naturally, relevant bugfixes from an earlier series propagate to later series.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some system for which there is no binary distribution, we recommend going with the production release series. Currently this is MySQL 5.1. All MySQL releases, even those from development series, are checked with the MySQL benchmarks and an extensive test suite before being issued.

If you are running an older system and want to upgrade, but do not want to take the chance of having a non-seamless upgrade, you should upgrade to the latest version in the same release series you are using (where only the last part of the version number is newer than yours). We have tried to fix only fatal bugs and make only small, relatively “safe” changes to that version.

If you want to use new features not present in the production release series, you can use a version from a development series. Note that development releases are not as stable as production releases.

If you want to use the very latest sources containing all current patches and bugfixes, you can use one of our BitKeeper repositories. These are not “releases” as such, but are available as previews of the code on which future releases are to be based.

The MySQL naming scheme uses release names that consist of three numbers and a suffix; for example, mysql-5.0.9-beta. The numbers within the release name are interpreted as follows:

  • The first number (5) is the major version and describes the file format. All MySQL 5 releases have the same file format.

  • The second number (0) is the release level. Taken together, the major version and release level constitute the release series number.

  • The third number (9) is the version number within the release series. This is incremented for each new release. Usually you want the latest version for the series you have chosen.

For each minor update, the last number in the version string is incremented. When there are major new features or minor incompatibilities with previous versions, the second number in the version string is incremented. When the file format changes, the first number is increased.

Release names also include a suffix to indicates the stability level of the release. Releases within a series progress through a set of suffixes to indicate how the stability level improves. The possible suffixes are:

  • alpha indicates that the release contains new features that have not been thoroughly tested. Known bugs should be documented in the News section. See Appendix D, MySQL Change History. Most alpha releases implement new commands and extensions. Active development that may involve major code changes can occur in an alpha release. However, we do conduct testing before issuing a release.

  • beta means that the release is intended to be feature-complete and that all new code has been tested. No major new features that are added. There should be no known critical bugs. A version changes from alpha to beta when there have been no reported fatal bugs within an alpha version for at least a month and we have no plans to add any new features that could make previously implemented features unreliable.

    All API's, externally visible structures and columns for SQL commands will not change during future beta, release candidate, or production releases.

  • rc is a release candidate; that is, a beta that has been around for a while and seems to work well. Only minor fixes are added. (A release candidate is what formerly was known as a gamma release.)

  • If there is no suffix, it means that the version has been run for a while at many different sites with no reports of critical repeatable bugs other than platform-specific bugs. Only critical bugfixes are applied to the release. This is what we call a production (stable) or “General Availability” (GA) release.

MySQL uses a naming scheme that is slightly different from most other products. In general, it is usually safe to use any version that has been out for a couple of weeks without being replaced by a new version within the same release series.

All releases of MySQL are run through our standard tests and benchmarks to ensure that they are relatively safe to use. Because the standard tests are extended over time to check for all previously found bugs, the test suite keeps getting better.

All releases have been tested at least with:

Another test is that we use the newest MySQL version in our internal production environment, on at least one machine. We have more than 100GB of data to work with.

2.1.2.2. Choosing a Distribution Format

After choosing which version of MySQL to install, you should decide whether to use a binary distribution or a source distribution. In most cases, you should probably use a binary distribution, if one exists for your platform. Binary distributions are available in native format for many platforms, such as RPM files for Linux or DMG package installers for Mac OS X. Distributions also are available as Zip archives or compressed tar files.

Reasons to choose a binary distribution include the following:

  • Binary distributions generally are easier to install than source distributions.

  • To satisfy different user requirements, we provide two different binary versions: one compiled with the non-transactional storage engines (a small, fast binary), and one configured with the most important extended options like transaction-safe tables. Both versions are compiled from the same source distribution. All native MySQL clients can connect to servers from either MySQL version.

    The extended MySQL binary distribution is marked with the -max suffix and is configured with the same options as mysqld-max. See Section 5.1.2, “The mysqld-max Extended MySQL Server”.

    If you want to use the MySQL-Max RPM, you must first install the standard MySQL-server RPM.

Under some circumstances, you may be better off installing MySQL from a source distribution:

  • You want to install MySQL at some explicit location. The standard binary distributions are ready to run at any place, but you may want to have even more flexibility to place MySQL components where you want.

  • You want to configure mysqld with some extra features that are not included in the standard binary distributions. Here is a list of the most common extra options that you may want to use:

    • --with-innodb (enabled by default for all MySQL 5.1 binary releases)

    • --with-berkeley-db (not available on all platforms)

    • --with-libwrap

    • --with-named-z-libs (this is done for some of the binaries)

    • --with-debug[=full]

  • You want to configure mysqld without some features that are included in the standard binary distributions. For example, distributions normally are compiled with support for all character sets. If you want a smaller MySQL server, you can recompile it with support for only the character sets you need.

  • You have a special compiler (such as pgcc) or want to use compiler options that are better optimized for your processor. Binary distributions are compiled with options that should work on a variety of processors from the same processor family.

  • You want to use the latest sources from one of the BitKeeper repositories to have access to all current bugfixes. For example, if you have found a bug and reported it to the MySQL development team, the bugfix is committed to the source repository and you can access it there. The bugfix does not appear in a release until a release actually is issued.

  • You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you should get a source distribution, because the source code is always the ultimate manual.

  • Source distributions contain more tests and examples than binary distributions.

2.1.2.3. How and When Updates Are Released

MySQL is evolving quite rapidly and we want to share new developments with other MySQL users. We try to produce a new release whenever we have new and useful features that others also seem to have a need for.

We also try to help users who request features that are easy to implement. We take note of what our licensed users want, and we especially take note of what our support customers want and try to help them in this regard.

No one is required to download a new release. The News section tells you if the new release has something you really want. See Appendix D, MySQL Change History.

We use the following policy when updating MySQL:

  • Releases are issued within each series. For each release, the last number in the version is one more than the previous release within the same series.

  • Production (stable) releases are meant to appear about 1-2 times a year. However, if small bugs are found, a release with only bugfixes is issued.

  • Working releases/bugfixes to old releases are meant to appear about every 4-8 weeks.

  • Binary distributions for some platforms are made by us for major releases. Other people may make binary distributions for other systems, but probably less frequently.

  • We make fixes available as soon as we have identified and corrected small or non-critical but annoying bugs. The fixes are available immediately from our public BitKeeper repositories, and will be included in the next release.

  • If by any chance a fatal bug is found in a release, our policy is to fix it in a new release as soon as possible. (We would like other companies to do this, too!)

2.1.2.4. Release Philosophy—No Known Bugs in Releases

We put a lot of time and effort into making our releases bug-free. We haven't released a single MySQL version with any known fatal repeatable bugs. (A “fatal” bug is something that crashes MySQL under normal usage, produces incorrect answers for normal queries, or has a security problem.)

We have documented all open problems, bugs, and issues that are dependent on design decisions. See Section A.8, “Known Issues in MySQL”.

Our aim is to fix everything that is fixable without making a stable MySQL version less stable. In certain cases, this means we can fix an issue in the development versions, but not in the stable (production) version. Naturally, we document such issues so that users are aware of them.

Here is a description of how our build process works:

  • We monitor bugs from our customer support list, the bugs database at http://bugs.mysql.com/, and the MySQL external mailing lists.

  • All reported bugs for live versions are entered into the bugs database.

  • When we fix a bug, we always try to make a test case for it and include it into our test system to ensure that the bug can never recur without being detected. (About 90% of all fixed bugs have test cases.)

  • We create test cases for all new features we add to MySQL.

  • Before we start to build a new MySQL release, we ensure that all reported repeatable bugs for that MySQL version (3.23.x, 4.0.x, 4.1.x, 5.0.x, and so on) are fixed. If something is impossible to fix (due to some internal design decision in MySQL), we document this in the manual. See Section A.8, “Known Issues in MySQL”.

  • We do a build on all platforms for which we support binaries (15+ platforms) and run our test suite and benchmark suite on all of them.

  • We do not publish a binary for a platform for which the test or benchmark suite fails. If the problem is due to a general error in the source, we fix it and do the build plus tests on all systems again from scratch.

  • The build and test process takes 2-3 days. If we receive a report regarding a fatal bug during this process (for example, one that causes a core dump), we fix the problem and restart the build process.

  • After publishing the binaries on http://dev.mysql.com/, we send out an announcement message to the mysql and announce mailing lists. See Section 1.7.1, “MySQL Mailing Lists”. The announcement message contains a list of all changes to the release and any known problems with the release. The Known Problems section in the release notes has been needed for only a handful of releases.

  • To quickly give our users access to the latest MySQL features, we produce a new MySQL release every 4-8 weeks. Source code snapshots are built daily and are available at http://downloads.mysql.com/snapshots.php.

  • If, despite our best efforts, we receive any bug reports after the release is made a critical problem with that build on a specific platform, we fix it at once and build a new 'a' release for that platform. Thanks to our large user base, any such problems are found and resolved very quickly.

  • Our track record for making stable releases is quite good. In the last 150 releases, we had to do a new build for fewer than 10 of them. In three of these cases, the bug was a faulty glibc library on one of our build machines that took us a long time to track down.

2.1.2.5. MySQL Binaries Compiled by MySQL AB

As a service of MySQL AB, we provide a set of binary distributions of MySQL that are compiled on systems at our site or on systems where supporters of MySQL kindly have given us access to their machines.

In addition to the binaries provided in platform-specific package formats, we offer binary distributions for a number of platforms in the form of compressed tar files (.tar.gz files). See Section 2.2, “Standard MySQL Installation Using a Binary Distribution”.

For Windows distributions, see Section 2.3, “Installing MySQL on Windows”.

These distributions are generated using the script Build-tools/Do-compile, which compiles the source code and creates the binary tar.gz archive using scripts/make_binary_distribution.

These binaries are configured and built with the following compilers and options. This information can also be obtained by looking at the variables COMP_ENV_INFO and CONFIGURE_LINE inside the script bin/mysqlbug of every binary tar file distribution.

The following binaries are built on MySQL AB development systems:

  • Linux 2.4.xx x86 with gcc 2.95.3:

    CFLAGS="-O2 -mcpu=pentiumpro" CXX=gcc CXXFLAGS="-O2 -mcpu=pentiumpro -felide-constructors" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --enable-assembler --disable-shared --with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static

  • Linux 2.4.x x86 with icc (Intel C++ Compiler 8.1 or later releases):

    CC=icc CXX=icpc CFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict" CXXFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict" ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --enable-assembler --disable-shared --with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static --with-embedded-server --with-innodb

    Note that versions 8.1 and newer of the Intel compiler have separate drivers for 'pure' C (icc) and C++ (icpc); if you use icc version 8.0 or older for building MySQL, you will need to set CXX=icc.

  • Linux 2.4.xx Intel Itanium 2 with ecc (Intel C++ Itanium Compiler 7.0):

    CC=ecc CFLAGS="-O2 -tpp2 -ip -nolib_inline" CXX=ecc CXXFLAGS="-O2 -tpp2 -ip -nolib_inline" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile

  • Linux 2.4.xx Intel Itanium with ecc (Intel C++ Itanium Compiler 7.0):

    CC=ecc CFLAGS=-tpp1 CXX=ecc CXXFLAGS=-tpp1 ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile

  • Linux 2.4.xx alpha with ccc (Compaq C V6.2-505 / Compaq C++ V6.3-006):

    CC=ccc CFLAGS="-fast -arch generic" CXX=cxx CXXFLAGS="-fast -arch generic -noexceptions -nortti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared --disable-shared

  • Linux 2.x.xx ppc with gcc 2.95.4:

    CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared --with-embedded-server --with-innodb

  • Linux 2.4.xx s390 with gcc 2.95.3:

    CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared --with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static

  • Linux 2.4.xx x86_64 (AMD64) with gcc 3.2.1:

    CXX=gcc ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared

  • Sun Solaris 8 x86 with gcc 3.2.3:

    CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared --with-innodb

  • Sun Solaris 8 SPARC with gcc 3.2:

    CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --enable-assembler --with-named-z-libs=no --with-named-curses-libs=-lcurses --disable-shared

  • Sun Solaris 8 SPARC 64-bit with gcc 3.2:

    CC=gcc CFLAGS="-O3 -m64 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3 -m64 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-z-libs=no --with-named-curses-libs=-lcurses --disable-shared

  • Sun Solaris 9 SPARC with gcc 2.95.3:

    CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --enable-assembler --with-named-curses-libs=-lcurses --disable-shared

  • Sun Solaris 9 SPARC with cc-5.0 (Sun Forte 5.0):

    CC=cc-5.0 CXX=CC ASFLAGS="-xarch=v9" CFLAGS="-Xa -xstrconst -mt -D_FORTEC_ -xarch=v9" CXXFLAGS="-noex -mt -D_FORTEC_ -xarch=v9" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --enable-assembler --with-named-z-libs=no --enable-thread-safe-client --disable-shared

  • IBM AIX 4.3.2 ppc with gcc 3.2.3:

    CFLAGS="-O2 -mcpu=powerpc -Wa,-many " CXX=gcc CXXFLAGS="-O2 -mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-z-libs=no --disable-shared

  • IBM AIX 4.3.3 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

    CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192" CXX=xlC_r CXXFLAGS ="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192" ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-z-libs=no --disable-shared --with-innodb

  • IBM AIX 5.1.0 ppc with gcc 3.3:

    CFLAGS="-O2 -mcpu=powerpc -Wa,-many" CXX=gcc CXXFLAGS="-O2 -mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-z-libs=no --disable-shared

  • IBM AIX 5.2.0 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

    CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192" CXX=xlC_r CXXFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192" ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-z-libs=no --disable-shared --with-embedded-server --with-innodb

  • HP-UX 10.20 pa-risc1.1 with gcc 3.1:

    CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc CXXFLAGS="-DHPUX -I/opt/dce /include -felide-constructors -fno-exceptions -fno-rtti -O3 -fPIC" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-pthread --with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC --disable-shared

  • HP-UX 11.00 pa-risc with aCC (HP ANSI C++ B3910B A.03.50):

    CC=cc CXX=aCC CFLAGS=+DAportable CXXFLAGS=+DAportable ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared --with-embedded-server --with-innodb

  • HP-UX 11.11 pa-risc2.0 64bit with aCC (HP ANSI C++ B3910B A.03.33):

    CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared

  • HP-UX 11.11 pa-risc2.0 32bit with aCC (HP ANSI C++ B3910B A.03.33):

    CC=cc CXX=aCC CFLAGS="+DAportable" CXXFLAGS="+DAportable" ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared --with-innodb

  • HP-UX 11.22 ia64 64bit with aCC (HP aC++/ANSI C B3910B A.05.50):

    CC=cc CXX=aCC CFLAGS="+DD64 +DSitanium2" CXXFLAGS="+DD64 +DSitanium2" ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared --with-embedded-server --with-innodb

  • Apple Mac OS X 10.2 powerpc with gcc 3.1:

    CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared

  • FreeBSD 4.7 i386 with gcc 2.95.4:

    CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --enable-assembler --with-named-z-libs=not-used --disable-shared

  • FreeBSD 4.7 i386 using LinuxThreads with gcc 2.95.4:

    CFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT -D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads" CXXFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT -D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads" ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --enable-thread-safe-client --enable-local-infile --enable-assembler --with-named-thread-libs="-DHAVE_GLIBC2_STYLE_GETHOSTBYNAME_R -D_THREAD_SAFE -I /usr/local/include/pthread/linuxthreads -L/usr/local/lib -llthread -llgcc_r" --disable-shared --with-embedded-server --with-innodb

  • QNX Neutrino 6.2.1 i386 with gcc 2.95.3qnx-nto 20010315:

    CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared

The following binaries are built on third-party systems kindly provided to MySQL AB by other users. These are provided only as a courtesy; MySQL AB does not have full control over these systems, so we can provide only limited support for the binaries built on them.

  • SCO Unix 3.2v5.0.7 i386 with gcc 2.95.3:

    CFLAGS="-O3 -mpentium" LDFLAGS=-static CXX=gcc CXXFLAGS="-O3 -mpentium -felide-constructors" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-z-libs=no --enable-thread-safe-client --disable-shared

  • SCO UnixWare 7.1.4 i386 with CC 3.2:

    CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-z-libs=no --enable-thread-safe-client --disable-shared --with-readline

  • SCO OpenServer 6.0.0 i386 with CC 3.2:

    CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-z-libs=no --enable-thread-safe-client --disable-shared --with-readline

  • Compaq Tru64 OSF/1 V5.1 732 alpha with cc/cxx (Compaq C V6.3-029i / DIGITAL C++ V6.1-027):

    CC="cc -pthread" CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed -speculate all" CXX="cxx -pthread" CXXFLAGS="-O4 -ansi_alias -fast -inline speed -speculate all -noexceptions -nortti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --with-named-thread-libs="-lpthread -lmach -lexc -lc" --disable-shared --with-mysqld-ldflags=-all-static

  • SGI Irix 6.5 IP32 with gcc 3.0.1:

    CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared

  • FreeBSD/sparc64 5.0 with gcc 3.2.1:

    CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --disable-shared --with-innodb

The following compile options have been used for binary packages that MySQL AB provided in the past. These binaries no longer are being updated, but the compile options are listed here for reference purposes.

  • Linux 2.2.xx SPARC with egcs 1.1.2:

    CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex --enable-thread-safe-client --enable-local-infile --enable-assembler --disable-shared

  • Linux 2.2.x with x686 with gcc 2.95.2:

    CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --enable-assembler --with-mysqld-ldflags=-all-static --disable-shared --with-extra-charsets=complex

  • SunOS 4.1.4 2 sun4c with gcc 2.7.2.1:

    CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors" ./configure --prefix=/usr/local/mysql --disable-shared --with-extra-charsets=complex --enable-assembler

  • SunOS 5.5.1 (and above) sun4u with egcs 1.0.3a or 2.90.27 or

    gcc 2.95.2 and newer: CC=gcc CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-low-memory --with-extra-charsets=complex --enable-assembler

  • SunOS 5.6 i86pc with gcc 2.8.1:

    CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql --with-low-memory --with-extra-charsets=complex

  • BSDI BSD/OS 3.1 i386 with gcc 2.7.2.1:

    CC=gcc CXX=gcc CXXFLAGS=-O ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex

  • BSDI BSD/OS 2.1 i386 with gcc 2.7.2:

    CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex

  • AIX 4.2 with gcc 2.7.2.2:

    CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql --with-extra-charsets=complex

Anyone who has more optimal options for any of the preceding configurations listed can always mail them to the MySQL internals mailing list. See Section 1.7.1, “MySQL Mailing Lists”.

The RPM distributions for MySQL 5.1 releases which we make available through our Web site are generated by MySQL AB.

If you want to compile a debug version of MySQL, you should add --with-debug or --with-debug=full to the preceding configure commands and remove any -fomit-frame-pointer options.

2.1.3. How to Get MySQL

Check the MySQL downloads page (http://dev.mysql.com/downloads/) for information about the current version and for downloading instructions. For a complete up-to-date list of MySQL download mirror sites, see http://dev.mysql.com/downloads/mirrors.html. There you can also find information about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.

Our main mirror is located at http://mirrors.sunsite.dk/mysql/.

2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG

After you have downloaded the MySQL package that suits your needs and before you attempt to install it, you should make sure that it is intact and has not been tampered with. MySQL AB offers three means of integrity checking:

  • MD5 checksums

  • Cryptographic signatures using GnuPG, the GNU Privacy Guard

  • For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the respective package one more time, perhaps from another mirror site. If you repeatedly cannot successfully verify the integrity of the package, please notify us about such incidents, including the full package name and the download site you have been using, at or . Do not report downloading problems using the bug-reporting system.

2.1.4.1. Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches the one provided on the MySQL download pages. Each package has an individual checksum that you can verify with the following command, where package_name is the name of the package you downloaded:

shell> md5sum package_name

Example:

  shell> md5sum mysql-standard-5.1.5-alpha-linux-i686.tar.gz
  aaab65abbec64d5e907dcd41b8699945  mysql-standard-5.1.5-alpha-linux-i686.tar.gz

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one displayed on the download page immediately below the respective package.

Note: Make sure to verify the checksum of the archive file (for example, the .zip or .tar.gz file) and not of the files that are contained inside of the archive.

Note that not all operating systems support the md5sum command. On some, it is simply called md5 and others do not ship it at all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide range of platforms. You can download the source code from http://www.gnu.org/software/textutils/ as well. If you have OpenSSL installed, you can also use the command openssl md5 package_name instead. A DOS/Windows implementation of the md5 command line utility is available from http://www.fourmilab.ch/md5/. winMd5Sum is a graphical MD5 checking tool which can be obtained from http://www.nullriver.com/index/products/winmd5sum.

2.1.4.2. Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic signatures. This is more reliable than using MD5 checksums, but requires more work.

MySQL AB sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://www.gnupg.org/ for more information about GnuPG and how to obtain and install it on your system. Most Linux distributions ship with GnuPG installed by default. For more information about GnuPG, see http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of MySQL AB's public GPG build key. You can download the key from http://www.keyserver.net/. The key that you want to obtain is named [email protected]. Alternatively, you can cut and paste the key directly from the following text:

Key ID:
pub  1024D/5072E1F5 2003-02-03
     MySQL Package signing key (www.mysql.com) <[email protected]>
Fingerprint: A4A9 4068 76FC BD3C 4567  70C8 8C71 8D3B 5072 E1F5

Public Key (ASCII-armored):

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q7TXlTUUwgUGFj
a2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkgPGJ1aWxkQG15c3FsLmNv
bT6IXQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQ
cuH1cY4AnilUwTXn8MatQOiG0a/bPxrvK/gCAJ4oinSNZRYTnblChwFaazt7PF3q
zIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00bKXvu
cSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ
YiKJAAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8J
Eg2aLos+5zEYrB/LsrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/l
xaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRi
Rjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE
7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fm
Le11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHbuE5p
/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+Lwqq
a8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1ZaSaf
anFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGoTbOW
I39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42Lmu
QT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt92
6s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZ
Whe70YGNPw1yjWJT1IhMBBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4A
n3r1QpVC9yhnW2cSAjq+kr72GX0eAJ4295kl6NxYEuFApmr1+0uUq/SlsQ==
=YJkx
-----END PGP PUBLIC KEY BLOCK-----

You can import the build key into your personal public GPG keyring by using gpg --import. For example, if you save the key in a file named mysql_pubkey.asc, the import command looks like this:

shell> gpg --import mysql_pubkey.asc

See the GPG documentation for more information on how to work with public keys.

After you have downloaded and imported the public build key, download your desired MySQL package and the corresponding signature, which also is available from the download page. The signature file has the same name as the distribution file with an .asc extension. For example:

Distribution filemysql-standard-5.1.5-alpha-linux-i686.tar.gz
Signature filemysql-standard-5.1.5-alpha-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify the signature for the distribution file:

shell> gpg --verify package_name.asc

Example:

  shell> gpg --verify mysql-standard-5.1.5-alpha-linux-i686.tar.gz.asc
  gpg: Signature made Tue 12 Jul 2005 23:35:41 EST using DSA key ID 5072E1F5
  gpg: Good signature from "MySQL Package signing key (www.mysql.com) <[email protected]>"

The Good signature message indicates that everything is all right. You can ignore any insecure memory warning you might obtain.

2.1.4.3. Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and MD5 checksum. You can verify a package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-5.1.5-alpha-0.i386.rpm
MySQL-server-5.1.5-alpha-0.i386.rpm: md5 gpg OK

Note: If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING KEYS: GPG#5072e1f5), even though you have imported the MySQL public build key into your own GPG keyring, you need to import the key into the RPM keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG itself). Rather, it maintains its own keyring because it is a system-wide application and a user's GPG public keyring is a user-specific file. To import the MySQL public key into the RPM keyring, first obtain the key as described in the previous section. Then use rpm --import to import the key. For example, if you have the public key stored in a file named mysql_pubkey.asc, import it using this command:

shell> rpm --import mysql_pubkey.asc

If you need to obtain the MySQL public key, see Section 2.1.4.2, “Signature Checking Using GnuPG.

2.1.5. Installation Layouts

This section describes the default layout of the directories created by installing binary or source distributions provided by MySQL AB. If you install a distribution provided by another vendor, some other layout might be used.

For MySQL 5.1 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL Server 5.1. (Some Windows users prefer to install to the older default installation directory C:\mysql. However, the layout of the subdirectories remains the same.) The installation directory has the following subdirectories:

DirectoryContents of Directory
binClient programs and the mysqld server
dataLog files, databases
DocsDocumentation
examplesExample programs and scripts
includeInclude (header) files
libLibraries
scriptsUtility scripts
shareError message files

Installations created from MySQL AB's Linux RPM distributions result in files under the following system directories:

DirectoryContents of Directory
/usr/binClient programs and scripts
/usr/sbinThe mysqld server
/var/lib/mysqlLog files, databases
/usr/share/doc/packagesDocumentation
/usr/include/mysqlInclude (header) files
/usr/lib/mysqlLibraries
/usr/share/mysqlError message and character set files
/usr/share/sql-benchBenchmarks

On Unix, a tar file binary distribution is installed by unpacking it at the installation location you choose (typically /usr/local/mysql) and creates the following directories in that location:

DirectoryContents of Directory
binClient programs and the mysqld server
dataLog files, databases
docsDocumentation, ChangeLog
includeInclude (header) files
libLibraries
scriptsmysql_install_db
share/mysqlError message files
sql-benchBenchmarks

A source distribution is installed after you configure and compile it. By default, the installation step installs files under /usr/local, in the following subdirectories:

DirectoryContents of Directory
binClient programs and scripts
include/mysqlInclude (header) files
infoDocumentation in Info format
lib/mysqlLibraries
libexecThe mysqld server
share/mysqlError message files
sql-benchBenchmarks and crash-me test
varDatabases and log files

Within its installation directory, the layout of a source installation differs from that of a binary installation in the following ways:

  • The mysqld server is installed in the libexec directory rather than in the bin directory.

  • The data directory is var rather than data.

  • mysql_install_db is installed in the bin directory rather than in the scripts directory.

  • The header file and library directories are include/mysql and lib/mysql rather than include and lib.

You can create your own binary installation from a compiled source distribution by executing the scripts/make_binary_distribution script from the top directory of the source distribution.

2.2. Standard MySQL Installation Using a Binary Distribution

The next several sections cover the installation of MySQL on platforms where we offer packages using the native packaging format of the respective platform. (This is also known as performing a “binary install.”) However, binary distributions of MySQL are available for many other platforms as well. See Section 2.7, “Installing MySQL on Other Unix-Like Systems”, for generic installation instructions for these packages that apply to all platforms.

See Section 2.1, “General Installation Issues”, for more information on what other binary distributions are available and how to obtain them.

2.3. Installing MySQL on Windows

A native Windows version of MySQL has been available from MySQL AB since version 3.21 and represents a sizable percentage of the daily downloads of MySQL. This section describes the process for installing MySQL on Windows.

The installer for the Windows version of MySQL, combined with a GUI Configuration Wizard, automatically installs MySQL, creates an option file, starts the server, and secures the default user accounts.

If you are upgrading an existing installation of MySQL prior to version 4.1.5, you must perform the following steps:

  1. Obtain and install the distribution.

  2. Set up an option file if necessary.

  3. Select the server that you want to use.

  4. Start the server.

  5. Assign passwords to the initial MySQL accounts.

This process also must be followed with newer MySQL installations where the installation package does not include an installer.

MySQL 5.1 for Windows is available in three distribution formats:

  • The binary distribution contains a setup program that installs everything you need so that you can start the server immediately.

  • The source distribution contains all the code and support files for building the executables using the Visual Studio 2003 compiler system.

Generally speaking, you should use the binary distribution. It is simpler to use than the others, and you need no additional tools to get MySQL up and running.

This section describes how to install MySQL on Windows using a binary distribution. To install using a source distribution, see Section 2.8.6, “Installing MySQL from Source on Windows”.

2.3.1. Windows System Requirements

To run MySQL on Windows, you need the following:

  • A 32-bit Windows operating system such as 9x, Me, NT, 2000, XP, or Windows Server 2003.

    A Windows NT-based operating system (NT, 2000, XP, 2003) permits you to run the MySQL server as a service. The use of a Windows NT-based operating system is strongly recommended. See Section 2.3.12, “Starting MySQL as a Windows Service”.

    Generally, you should install MySQL on Windows using an account that has administrator rights. Otherwise, you may encounter problems with certain operations such as editing the PATH variable or accessing the Service Control Manager.

  • TCP/IP protocol support.

  • A copy of the MySQL binary distribution for Windows, which can be downloaded from http://dev.mysql.com/downloads/. See Section 2.1.3, “How to Get MySQL”.

    Note: If you download the distribution via FTP, we recommend the use of an adequate FTP client with a resume feature to avoid corruption of files during the download process.

  • A tool that can read .zip files, to unpack the distribution file.

  • Enough space on the hard drive to unpack, install, and create the databases in accordance with your requirements (generally a minimum of 200 megabytes is recommended.)

You may also have the following optional requirements:

2.3.2. Choosing An Installation Package

For MySQL 5.1, there are three installation packages to choose from when installing MySQL on Windows. The packages are as follows:

  • The Essentials Package: This package has a filename similar to mysql-essential-5.1.5-alpha-win32.msi and contains the minimum set of files needed to install MySQL on Windows, including the Configuration Wizard. This package does not include optional components such as the embedded server and benchmark suite.

  • The Complete Package: This package has a filename similar to mysql-5.1.5-alpha-win32.zip and contains all files needed for a complete Windows installation, including the Configuration Wizard. This package includes optional components such as the embedded server and benchmark suite.

  • The Noinstall Archive: This package has a filename similar to mysql-noinstall-5.1.5-alpha-win32.zip and contains all the files found in the Complete install package, with the exception of the Configuration Wizard. This package does not include an automated installer, and must be manually installed and configured.

The Essentials package is recommended for most users.

Your choice of install package affects the installation process you must follow. If you choose to install either the Essentials or Complete install packages, see Section 2.3.3, “Installing MySQL with the Automated Installer”. If you choose to install MySQL from the Noinstall archive, see Section 2.3.6, “Installing MySQL from a Noinstall Zip Archive”.

2.3.3. Installing MySQL with the Automated Installer

New MySQL users can use the MySQL Installation Wizard and MySQL Configuration Wizard to install MySQL on Windows. These are designed to install and configure MySQL in such a way that new users can immediately get started using MySQL.

The MySQL Installation Wizard and MySQL Configuration Wizard are available in the Essentials and Complete install packages, and are recommended for most standard MySQL installations. Exceptions include users who need to install multiple instances of MySQL on a single server and advanced users who want complete control of server configuration.

2.3.4. Using the MySQL Installation Wizard

2.3.4.1. Introduction to the Installation Wizard

MySQL Installation Wizard is an installer for the MySQL server that uses the latest installer technologies for Microsoft Windows. The MySQL Installation Wizard, in combination with the MySQL Configuration Wizard, allows a user to install and configure a MySQL server that is ready for use immediately after installation.

The MySQL Installation Wizard is the standard installer for all MySQL 5.1 server distributions. Users of previous versions of MySQL need to shut down and remove their existing MySQL installations manually before installing MySQL with the MySQL Installation Wizard. See Section 2.3.4.7, “Upgrading MySQL”, for more information on upgrading from a previous version.

Microsoft has included an improved version of their Microsoft Windows Installer (MSI) in the recent versions of Windows. MSI has become the de-facto standard for application installations on Windows 2000, Windows XP, and Windows Server 2003. The MySQL Installation Wizard makes use of this technology to provide a smoother and more flexible installation process.

The Microsoft Windows Installer Engine was updated with the release of Windows XP; those using a previous version of Windows can reference this Microsoft Knowledge Base article for information on upgrading to the latest version of the Windows Installer Engine.

In addition, Microsoft has introduced the WiX (Windows Installer XML) toolkit recently. This is the first highly acknowledged Open Source project from Microsoft. We have switched to WiX because it is an Open Source project and it allows us to handle the complete Windows installation process in a flexible manner using scripts.

Improving the MySQL Installation Wizard depends on the support and feedback of users like you. If you find that the MySQL Installation Wizard is lacking some feature important to you, or if you discover a bug, please use our MySQL Bug System to request features or report problems.

2.3.4.2. Downloading and Starting the MySQL Installation Wizard

The MySQL server installation packages can be downloaded from http://dev.mysql.com/downloads/. If the package you download is contained within a Zip archive, you need to extract the archive first.

The process for starting the wizard depends on the contents of the installation package you download. If there is a setup.exe file present, double-click it to start the installation process. If there is a .msi file present, double-click it to start the installation process.

2.3.4.3. Choosing an Install Type

There are three installation types available: Typical, Complete, and Custom.

The Typical installation type installs the MySQL server, the mysql command-line client, and the command-line utilities. The command-line clients and utilities include mysqldump, myisamchk, and several other tools to help you manage the MySQL server.

The Complete installation type installs all components included in the installation package. The full installation package includes components such as the embedded server library, the benchmark suite, support scripts, and documentation.

The Custom installation type gives you complete control over which packages you wish to install and the installation path that is used. See Section 2.3.4.4, “The Custom Install Dialog”, for more information on performing a custom install.

If you choose the Typical or Complete installation types and click the Next button, you advance to the confirmation screen to verify your choices and begin the installation. If you choose the Custom installation type and click the Next button, you advance to the custom installation dialog, described in Section 2.3.4.4, “The Custom Install Dialog”.

2.3.4.4. The Custom Install Dialog

If you wish to change the installation path or the specific components that are installed by the MySQL Installation Wizard, you should choose the Custom installation type.

All available components are listed in a tree view on the left side of the custom install dialog. Components that are not installed have a red X icon; components that are installed have a gray icon. To change whether a component is installed, click on that component's icon and choose a new option from the drop-down list that appears.

You can change the default installation path by clicking the Change... button to the right of the displayed installation path.

After choosing your installation components and installation path, click the Next button to advance to the confirmation dialog.

2.3.4.5. The Confirmation Dialog

Once you choose an installation type and optionally choose your installation components, you advance to the confirmation dialog. Your installation type and installation path are displayed for you to review.

To install MySQL if you are satisfied with your settings, click the Install button. To change your settings, click the Back button. To exit the MySQL Installation Wizard without installing MySQL, click the Cancel button.

After installation is complete, you are given the option of registering with the MySQL web site. Registration gives you access to post in the MySQL forums at forums.mysql.com, along with the ability to report bugs at bugs.mysql.com and to subscribe to the newsletter. The final screen of the installer provides a summary of the installation and gives you the option to launch the MySQL Configuration Wizard, which you can use to create a configuration file, install the MySQL service, and configure security.

2.3.4.6. Changes Made by MySQL Installation Wizard

Once you click the Install button, the MySQL Installation Wizard begins the installation process and makes certain changes to your system which are described in the sections that follow.

Changes to the Registry

The MySQL Installation Wizard creates one Windows registry key in a typical install situation, located in HKEY_LOCAL_MACHINE\SOFTWARE\MySQL AB.

The MySQL Installation Wizard creates a key named after the major version of the server that is being installed, such as MySQL Server 5.1. It contains two string values, Location and Version. The Location string contains the path to the installation directory. In a default installation it contains C:\Program Files\MySQL\MySQL Server 5.1\. The Version string contains the release number. For example, for an installation of MySQL Server 5.1.5-alpha the key contains a value of 5.1.5-alpha.

These registry keys are used to help external tools identify the installed location of the MySQL server, preventing a complete scan of the hard-disk to determine the installation path of the MySQL server. The registry keys are not required to run the server and when using the noinstall Zip archive the registry keys are not created.

Changes to the Start Menu

The MySQL Installation Wizard creates a new entry in the Windows Start menu under a common MySQL menu heading named after the major version of MySQL that you have installed. For example, if you install MySQL 5.1, the MySQL Installation Wizard creates a MySQL Server 5.1 section in the Start menu.

The following entries are created within the new Start menu section:

  • MySQL Command Line Client: This is a shortcut to the mysql command-line client and is configured to connect as the root user. The shortcut prompts for a root user password when connecting.

  • MySQL Server Instance Config Wizard: This is a shortcut to the MySQL Configuration Wizard. Use this shortcut to configure a newly installed server, or to re-configure an existing server.

  • MySQL Documentation: This is a link to the MySQL server documentation that is stored locally in the MySQL server installation directory. This option is not available when the MySQL server is installed using the Essentials installation package.

Changes to the File System

The MySQL Installation Wizard by default installs the MySQL 5.1 server to C:\Program Files\MySQL\MySQL Server 5.1, where Program Files is the default location for applications in your system, and 5.1 is the major version of your MySQL server. This is the new recommended location for the MySQL server, replacing the previous default location c:\mysql.

By default, all MySQL applications are stored in a common directory at C:\Program Files\MySQL, where Program Files is the default location for applications in your Windows installation. A typical MySQL installation on a developer machine may look like this:

C:\Program Files\MySQL\MySQL Server 5.1
C:\Program Files\MySQL\MySQL Administrator 1.0
C:\Program Files\MySQL\MySQL Query Browser 1.0

This approach makes it easier to manage and maintain all MySQL applications installed on a particular system.

2.3.4.7. Upgrading MySQL

The MySQL Installation Wizard can perform server upgrades automatically using the upgrade capabilities of MSI. That means you do not need to remove a previous installation manually before installing a new release. The installer automatically shuts down and removes the previous MySQL service before installing the new version.

Automatic upgrades are available only when upgrading between installations that have the same major and minor version numbers. For example, you can upgrade automatically from MySQL 4.1.5 to MySQL 4.1.6, but not from MySQL 5.0 to MySQL 5.1.

See Section 2.3.15, “Upgrading MySQL on Windows”.

2.3.5. Using the Configuration Wizard

2.3.5.1. Introduction to the Configuration Wizard

The MySQL Configuration Wizard helps automate the process of configuring your server under Windows. The MySQL Configuration Wizard creates a custom my.ini file by asking you a series of questions and then applying your responses to a template to generate a my.ini file that is tuned to your installation.

The MySQL Configuration Wizard is included with the MySQL 5.1 server, and is currently available for Windows users only.

The MySQL Configuration Wizard is to a large extent the result of feedback MySQL AB has received from many users over a period of several years. However, if you find that it lacks some feature important to you, or if you discover a bug, please use our MySQL Bug System to request features or report problems.

2.3.5.2. Starting the MySQL Configuration Wizard

The MySQL Configuration Wizard is typically launched from the MySQL Installation Wizard, as the MySQL Installation Wizard exits. You can also launch the MySQL Configuration Wizard by clicking the MySQL Server Instance Config Wizard entry in the MySQL section of the Windows Start menu.

In addition, you can navigate to the bin directory of your MySQL installation and launch the MySQLInstanceConfig.exe file directly.

2.3.5.3. Choosing a Maintenance Option

If the MySQL Configuration Wizard detects an existing my.ini file, you have the option of either re-configuring your existing server, or removing the server instance by deleting the my.ini file and stopping and removing the MySQL service.

To reconfigure an existing server, choose the Re-configure Instance option and click the Next button. Your existing my.ini file is renamed to mytimestamp.ini.bak, where timestamp is the date and time the existing my.ini file was created. To remove the existing server instance, choose the Remove Instance option and click the Next button.

If you choose the Remove Instance option, you advance to a confirmation window. Click the Execute button: the MySQL Configuration Wizard stops and removes the MySQL service, and then deletes the my.ini file. The server installation and its data folder are not removed.

If you choose the Re-configure Instance option, you advance to the Configuration Type dialog where you can choose the type of installation you wish to configure.

2.3.5.4. Choosing a Configuration Type

When you start the MySQL Configuration Wizard for a new MySQL installation, or choose the Re-configure Instance option for an existing installation, you advance to the Configuration Type dialog.

There are two configuration types available: Detailed Configuration and Standard Configuration. The Standard Configuration option is intended for new users who want to get started with MySQL quickly without having to make many decisions in regards to server configuration. The Detailed Configuration option is intended for advanced users who want more fine-grained control over server configuration.

If you are new to MySQL and need a server configured as a single-user developer machine the Standard Configuration should suit your needs. Choosing the Standard Configuration option causes the MySQL Configuration Wizard to set all configuration options automatically with the exception of Service Options and Security Options.

The Standard Configuration sets options that may be incompatible with systems where there are existing MySQL installations. If you have an existing MySQL installation on your system in addition to the installation you wish to configure, the Detailed Configuration option is recommended.

To complete the Standard Configuration, please refer to the sections on Service Options and Security Options in Section 2.3.5.11, “The Service Options Dialog”, and Section 2.3.5.12, “The Security Options Dialog”, respectively.

2.3.5.5. The Server Type Dialog

There are three different server types available to choose from, and the server type you choose affects the decisions the MySQL Configuration Wizard makes with regards to memory, disk, and processor usage.

  • Developer Machine: Choose this option for a typical desktop workstation where MySQL is intended only for personal use. It is assumed that many other desktop applications are running. The MySQL server is configured to use minimal system resources.

  • Server Machine: Choose this option for a server machine where the MySQL server is running alongside other server applications such as FTP, email, and web servers. The MySQL server is configured to use a moderate portion of the system resources.

  • Dedicated MySQL Server Machine: Choose this option for a server machine that is intended to run only the MySQL server. It is assumed that no other applications are running. The MySQL server is configured to use all available system resources.

2.3.5.6. The Database Usage Dialog

The Database Usage dialog allows you to indicate the table handlers you expect to use when creating MySQL tables. The option you choose determines whether the InnoDB storage engine is available and what percentage of the server resources are available to InnoDB.

  • Multifunctional Database: This option enables both the InnoDB and MyISAM storage engines and divides resources evenly between the two. This option is recommended for users that use both storage engines on a regular basis.

  • Transactional Database Only: This option enables both the InnoDB and MyISAM storage engines, but dedicates most server resources to the InnoDB storage engine. This option is recommended for users that use InnoDB almost exclusively and make only minimal use of MyISAM.

  • Non-Transactional Database Only: This option disables the InnoDB storage engine completely and dedicates all server resources to the MyISAM storage engine. This option is recommended for users who do not use InnoDB.

2.3.5.7. The InnoDB Tablespace Dialog

Some users may want to locate the InnoDB tablespace files in a different location than the MySQL server data directory. Placing the tablespace files in a separate location can be desirable if your system has a higher capacity or higher performance storage device available, such as a RAID storage system.

To change the default location for the InnoDB tablespace files, choose a new drive from the drop-down list of drive letters and choose a new path from the drop-down list of paths. To create a custom path, click the ... button.

If you are modifying the configuration of an existing server, you must click the Modify button before you change the path. In this situation you must move the existing tablespace files to the new location manually before starting the server.

2.3.5.8. The Concurrent Connections Dialog

It is important to set a limit to the number of concurrent connections to the MySQL server that can be established to prevent the server from running out of resources. The Concurrent Connections dialog allows you to choose the expected usage of your server, and sets the limit for concurrent connections accordingly. It is also possible to set the concurrent connection limit manually.

  • Decision Support (DSS)/OLAP: Choose this option if your server does not require a large number of concurrent connections. The maximum number of connections is set at 100, with an average of 20 concurrent connections assumed.

  • Online Transaction Processing (OLTP): Choose this option if your server requires a large number of concurrent connections. The maximum number of connections is set at 500.

  • Manual Setting: Choose this option to set the maximum number of concurrent connections to the server manually. Choose the number of concurrent connections from the drop-down box provided, or enter the maximum number of connections into the drop-down box if the number you desire is not listed.

2.3.5.9. The Networking and Strict Mode Options Dialog

Use the Networking Options dialog to enable or disable TCP/IP networking and to configure the port number that is used to connect to the MySQL server.

TCP/IP networking is enabled by default. To disable TCP/IP networking, uncheck the box next to the Enable TCP/IP Networking option.

Port 3306 is used by default. To change the port used to access MySQL, choose a new port number from the drop-down box or type a new port number directly into the drop-down box. If the port number you choose is in use you are prompted to confirm your choice of port number.

Set the Server SQL Mode to either enable or disable strict mode. Enabling strict mode (default) will make MySQL behave more like other database management systems. If you run applications that rely on MySQL's old “forgiving” behavior make sure to either adapt those applications or to disable strict mode. For more information about strict mode, see Section 5.3.2, “The Server SQL Mode”.

2.3.5.10. The Character Set Dialog

The MySQL server supports multiple character sets and it is possible to set a default server character set that is applied to all tables, columns, and databases unless overridden. Use the Character Set dialog to change the default character set of the MySQL server.

  • Standard Character Set: Choose this option if you want to use Latin1 as the default server character set. Latin1 is used for English and many Western European languages.

  • Best Support For Multilingualism: Choose this option if you want to use utf8 as the default server character set. utf8 can store characters from many different languages in a single character set.

  • Manual Selected Default Character Set / Collation: Choose this option if you want to pick the server's default character set manually. Choose the desired character set from the provided drop-down list.

2.3.5.11. The Service Options Dialog

On Windows NT-based platforms, the MySQL server can be installed as a service. When installed as a service, the MySQL server can be started automatically during system startup, and even restarted automatically by Windows in the event of a service failure.

The MySQL Configuration Wizard installs the MySQL server as a service by default, using the service name MySQL. If you do not wish to install the service, uncheck the box next to the Install As Windows Service option. You can change the service name by picking a new service name from the drop-down box provided or by entering a new service name into the drop-down box.

To install the MySQL server as a service but not have it started automatically at startup, uncheck the box next to the Launch the MySQL Server Automatically option.

2.3.5.12. The Security Options Dialog

It is strongly recommended that you set a root password for your MySQL server, and the MySQL Configuration Wizard requires you set a root password by default. If you do not wish to set a root password, uncheck the box next to the Modify Security Settings option.

To set the root password, enter the desired password into both the New root password and Confirm boxes. If you are reconfiguring an existing server, you also need to enter the existing root password into the Current root password box.

To prevent root logins from across the network, check the box next to the Root may only connect from localhost option. This increases the security of your root account.

To create an anonymous user account, check the box next to the Create An Anonymous Account option. Creating an anonymous account can decrease server security and cause login and permission difficulties. For this reason, it is not recommended.

2.3.5.13. The Confirmation Dialog

The final dialog in the MySQL Configuration Wizard is the Confirmation Dialog. To start the configuration process, click the Execute. To return to a previous dialog, click the Back button. To exit the MySQL Configuration Wizard without configuring the server, click the Cancel button.

After you click the Execute button, the MySQL Configuration Wizard performs a series of tasks whose progress is displayed onscreen as the tasks are performed.

The MySQL Configuration Wizard first determines configuration file options based on your choices using a template prepared by MySQL AB developers and engineers. This template is named my-template.ini and is located in your server installation directory.

The MySQL Configuration Wizard then writes these options to a my.ini file. The final location of the my.ini file is displayed next to the Write configuration file task.

If you chose to create a service for the MySQL server the MySQL Configuration Wizard creates and starts the service. If you are re-configuring an existing service, the MySQL Configuration Wizard restarts the service to apply your configuration changes.

If you chose to set a root password, the MySQL Configuration Wizard connects to the server, sets your new root password and applies any other security settings you may have selected.

After the MySQL Configuration Wizard has completed its tasks, a summary is displayed. Click the Finish button to exit the MySQL Configuration Wizard.

2.3.5.14. The Location of the my.ini File

The MySQL Configuration Wizard places the my.ini file in the installation directory for the MySQL server. This helps associate configuration files with particular server instances.

To ensure that the MySQL server knows where to look for the my.ini file, an argument similar to this is passed to the MySQL server as part of the service installation: --defaults-file="C:\Program Files\MySQL\MySQL Server 5.1\my.ini", where C:\Program Files\MySQL\MySQL Server 5.1 is replaced with the installation path to the MySQL Server.

The --defaults-file instructs the MySQL server to read the specified file for configuration options.

2.3.5.15. Editing the my.ini File

To modify the my.ini file, open it with a text editor and make any necessary changes. You can also modify the server configuration with the MySQL Administrator utility.

MySQL clients and utilities such as the mysql command-line client and mysqldump are not able to locate the my.ini file located in the server installation directory. To configure the client and utility applications, create a new my.ini file in the C:\WINDOWS or C:\WINNT directory as is applicable to your Windows version.

2.3.6. Installing MySQL from a Noinstall Zip Archive

Users who are installing from the Noinstall package can use the instructions in this section to manually install MySQL. The process for installing MySQL from a Zip archive is as follows:

  1. Extract the archive to the desired install directory.

  2. Create an option file.

  3. Choose a MySQL server type.

  4. Start the MySQL server.

  5. Secure the default user accounts.

This process is described in the sections that follow.

2.3.7. Extracting the Install Archive

To install MySQL manually, do the following:

  1. If you are upgrading from a previous version please refer to Section 2.3.15, “Upgrading MySQL on Windows”, before beginning the upgrade process.

  2. If you are using a Windows NT-based operating system such as Windows NT, Windows 2000, Windows XP, or Windows Server 2003, make sure that you are logged in as a user with administrator privileges.

  3. Choose an installation location. Traditionally the MySQL server is installed in C:\mysql, and the MySQL Installation Wizard installs MySQL to C:\Program Files\MySQL. If you do not install MySQL at C:\mysql, you must specify the path to the install directory during startup or in an option file. See Section 2.3.8, “Creating an Option File”.

  4. Extract the install archive to the chosen installation location using your preferred zip archive tool. Some tools may extract the archive to a folder within your chosen installation location. If this occurs you can move the contents of the subfolder into the chosen installation location.

2.3.8. Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command line or place them in an option file. For options that are used every time the server starts, you may find it most convenient to use an option file to specify your MySQL configuration. This is particularly true under the following circumstances:

  • The installation or data directory locations are different from the default locations (C:\Program Files\MySQL\MySQL Server 5.1 and C:\Program Files\MySQL\MySQL Server 5.1\data).

  • You need to tune the server settings.

When the MySQL server starts on Windows, it looks for options in two files: the my.ini file in the Windows directory, and the C:\my.cnf file. The Windows directory typically is named something like C:\WINDOWS or C:\WINNT. You can determine its exact location from the value of the WINDIR environment variable using the following command:

C:\> echo %WINDIR%

MySQL looks for options first in the my.ini file, and then in the my.cnf file. However, to avoid confusion, it's best if you use only one file. If your PC uses a boot loader where C: is not the boot drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain text file.

You can also make use of the example option files included with your MySQL distribution. Look in your install directory for files such as my-small.cnf, my-medium.cnf, my-large.cnf, and my-huge.cnf, which you can rename and copy to the appropriate location for use as a base configuration file.

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an option file containing a [mysqld] section to specify values for the basedir and datadir parameters:

[mysqld]
# set basedir to your installation path
basedir=E:/mysql
# set datadir to the location of your data directory
datadir=E:/mydata/data

Note that Windows pathnames are specified in option files using (forward) slashes rather than backslashes. If you do use backslashes, you must double them:

[mysqld]
# set basedir to your installation path
basedir=E:\\mysql
# set datadir to the location of your data directory
datadir=E:\\mydata\\data

On Windows, the MySQL installer places the data directory directly under the directory where you install MySQL. If you would like to use a data directory in a different location, you should copy the entire contents of the data directory to the new location. For example, if MySQL is installed in C:\Program Files\MySQL\MySQL Server 5.1 the data directory is by default in C:\Program Files\MySQL\MySQL Server 5.1\data. If you want to use E:\mydata as the data directory instead, you must do two things:

  1. Move the entire data directory and all of its contents from C:\Program Files\MySQL\MySQL Server 5.1\data to E:\mydata.

  2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.9. Selecting a MySQL Server type

The following table shows the available MySQL 5.1 servers for Windows:

BinaryDescription
mysqld-debugCompiled with full debugging and automatic memory allocation checking, as well as InnoDB and BDB tables.
mysqldOptimized binary with InnoDB support.
mysqld-ntOptimized binary for Windows NT, 2000, and XP with support for named pipes.
mysqld-maxOptimized binary with support for InnoDB and BDB tables.
mysqld-max-ntLike mysqld-max, but compiled with support for named pipes.

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel i386-class or higher processor.

All Windows MySQL 5.1 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. The mysqld-nt and mysql-max-nt servers support named pipes on Windows NT, 2000, XP, and 2003. However, the default is to use TCP/IP regardless of platform. (Named pipes are slower than TCP/IP in many Windows configurations.)

Use of named pipes is subject to these conditions:

  • Named pipes are enabled only if you start the server with the --enable-named-pipe option. It is necessary to use this option explicitly because some users have experienced problems with shutting down the MySQL server when named pipes were used.

  • Named pipe connections are allowed only by the mysqld-nt or mysqld-max-nt servers, and only if the server is run on a version of Windows that supports named pipes (NT, 2000, XP, 2003).

  • These servers can be run on Windows 98 or Me, but only if TCP/IP is installed; named pipe connections cannot be used.

  • These servers can not be run on Windows 95.

Note: Most of the examples in reference manual use mysqld as the server name. If you choose to use a different server, such as mysqld-nt, make the appropriate substitutions in the commands that are shown in the examples.

2.3.10. Starting the Server for the First Time

The information in this section applies primarily if you installed MySQL using the Noinstall version, or if you wish to configure and test MySQL manually rather than with the GUI tools.

On Windows 95, 98, or Me, MySQL clients always connect to the server using TCP/IP. (This allows any machine on your network to connect to your MySQL server.) Because of this, you must make sure that TCP/IP support is installed on your machine before starting MySQL. You can find TCP/IP on your Windows CD-ROM.

Note that if you are using an old Windows 95 release (for example, OSR2), it is likely that you have an old Winsock package; MySQL requires Winsock 2. You can get the newest Winsock from http://www.microsoft.com/. Windows 98 has the new Winsock 2 library, so it is unnecessary to update the library.

On NT-based systems such as Windows NT, 2000, XP, or 2003, clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports named pipe connections. To get MySQL to work with TCP/IP on Windows NT 4, you must install service pack 3 (or newer).

MySQL for Windows also supports shared-memory connections if started with the --shared-memory option. Clients can connect through shared memory by using the --protocol=memory option.

For information about which server binary to run, see Section 2.3.9, “Selecting a MySQL Server type”.

This section gives a general overview of starting the MySQL server. The following sections provide more specific information for starting the MySQL server from the command line or as a Windows service.

The examples in these sections assume that MySQL is installed under the default location of C:\Program Files\MySQL\MySQL Server 5.1. Adjust the pathnames shown in the examples if you have MySQL installed in a different location.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you can have the server display status messages in the window where they are easy to see. If something is wrong with your configuration, these messages make it easier for you to identify and fix any problems.

To start the server, enter this command:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld --console

For servers that include InnoDB support, you should see the following messages as the server starts:

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25  InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates that the server is ready to service client connections:

mysqld: ready for connections
Version: '5.1.5-alpha'  socket: ''  port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data directory (C:\Program Files\MySQL\MySQL Server 5.1\data by default). The error log is the file with the .err extension.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.9, “Post-Installation Setup and Testing”.

2.3.11. Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version of Windows.

To start the mysqld server from the command line, you should start a console window (or “DOS window”) and enter this command:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld

The path used in the preceding example may vary depending on the install location of MySQL on your system.

On non-NT versions of Windows, this starts mysqld in the background. That is, after the server starts, you should see another command prompt. If you start the server this way on Windows NT, 2000, XP, or 2003, the server runs in the foreground and no command prompt appears until the server exits. Because of this, you should open another console window to run client programs while the server is running.

You can stop the MySQL server by executing this command:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to shut down. The command connects as the MySQL root user, which is the default administrative account in the MySQL grant system. Note that users in the MySQL grant system are wholly independent from any login users under Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to indicate the cause of the problem. The error log is located in the C:\Program Files\MySQL\MySQL Server 5.1\data directory. It is the file with a suffix of .err. You can also try to start the server as mysqld --console; in this case, you may get some useful information on the screen that may help solve the problem.

The last option is to start mysqld with --standalone --debug. In this case, mysqld writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See Section E.1.2, “Creating Trace Files”.

Use mysqld --verbose --help to display all the options that mysqld understands.

2.3.12. Starting MySQL as a Windows Service

On the NT family (Windows NT, 2000, XP, 2003), the recommended way to run MySQL is to install it as a Windows service, whereby MySQL starts and stops automatically when Windows starts and stops. A MySQL server installed as a service can also be controlled from the command line using NET commands, or with the graphical Services utility.

The Services utility (the Windows Service Control Manager) can be found in the Windows Control Panel (under Administrative Tools on Windows 2000, XP, and Server 2003). It is advisable to close the Services utility while performing server installation or removal operations from the command line. This prevents a number of errors.

Before installing MySQL as a Windows service, you should first stop the current server if it is running by using the following command:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin -u root shutdown

Note: If the MySQL root user account has a password, you need to invoke this command as C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin -u root -p shutdown and supply the password when prompted.

This invokes the MySQL administrative utility mysqladmin, which connects to the server and tells it to shut down. The command connects as the MySQL root user, which is the default administrative account in the MySQL grant system. Note that users in the MySQL grant system are wholly independent from any login users under Windows.

Install the server as a service using this command:

C:\> mysqld --install

If you have problems installing mysqld as a service using just the server name, try installing it using its full pathname. For example:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld --install

You can also add the path to the mysql bin directory to your Windows system PATH environment variable:

  • On the Windows desktop, right-click on the My Computer icon, and select Properties

  • Next select, the Advanced tab from the System Properties menu that appears, and click the Environment Variables button.

  • Under System Variables, select Path, and then click the Edit button. The Edit System Variable dialogue should appear.

  • Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the complete path to your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL Server 5.1\bin), Note that there should be a semicolon separating this path from any values present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were opened have been dismissed. You should now be able to invoke any MySQL executable program by typing its name at the DOS prompt from any directory on the system, without having to supply the path. This includes the servers, the mysql client, and all MySQL command-line utilities such as mysqladmin and mysqldump.

  • Note that you should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL servers on the same machine.

Warning: You must exercise great care when editing your system PATH by hand; the accidentally deletion or modification of any portion of the existing PATH value can leave you with a malfunctioning or even unusable system.

The service-installation command does not start the server. Instructions for that are given later in this section.

The following additional arguments are available in MySQL 5.1 when installing the service:

  • You can specify a service name immediately following the --install option. The default service name is MySQL.

  • If a service name is given, it can be followed by a single option. By convention, this should be --defaults-file=file_name to specify the name of an option file from which the server should read options when it starts.

    It is possible to use a single option other than --defaults-file, but this is discouraged. --defaults-file is more flexible because it enables you to specify multiple startup options for the server by placing them in the named option file.

  • You can also specify a --local-service option following the service name. This causes the server to run using the LocalService Windows account that has limited system privileges. This account is available only for Windows XP or newer. If both --defaults-file and --local-service are given following the service name, they can be in any order.

For a MySQL server that is installed as a Windows service, the following rules determine the service name and option files that the server uses:

  • If the service-installation command specifies no service name or the default service name (MySQL) following the --install option, the server uses the a service name of MySQL and reads options from the [mysqld] group in the standard option files.

  • If the service-installation command specifies a service name other than MySQL following the --install option, the server uses that service name. It reads options from the group that has the same name as the service, and reads options from the standard option files.

    The server also reads options from the [mysqld] group from the standard option files. This allows you to use the [mysqld] group for options that should be used by all MySQL services, and an option group with the same name as a service for use by the server installed with that service name.

  • If the service-installation command specifies a --defaults-file option after the service name, the server reads options only from the [mysqld] group of the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld --install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no --defaults-file option had been given, this command would have the effect of causing the server to read the [mysqld] group from the standard option files. However, because the --defaults-file option is present, the server reads options from the [mysqld] option group, but only from the named file.

You can also specify options as Start parameters in the Windows Services utility before you start the MySQL service.

Once a MySQL server has been installed as a service, Windows starts the service automatically whenever Windows starts. The service also can be started immediately from the Services utility, or by using the command NET START MySQL. The NET command is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen there. If mysqld does not start, check the error log to see whether the server wrote any messages there to indicate the cause of the problem. The error log is located in the MySQL data directory (for example, C:\Program Files\MySQL\MySQL Server 5.1\data). It is the file with a suffix of .err.

When a MySQL server has been installed as a service, and the service is running, Windows stops the service automatically when Windows shuts down. The server also can be stopped manually by using the Services utility, the command NET STOP MySQL, or the command mysqladmin shutdown.

You also have the choice of installing the server as a manual service if you do not wish for the service to be started automatically during the boot process. To do this, use the --install-manual option rather than the --install option:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld --install-manual

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP MYSQL. Then use the --remove option to remove it:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see Section 2.3.11, “Starting MySQL from the Windows Command Line”.

Please see Section 2.3.14, “Troubleshooting a MySQL Installation Under Windows”, if you encounter difficulties during installation.

2.3.13. Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqlshow
C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqlshow -u root mysql
C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin version status proc
C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysql test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem with your DNS. In this case, start mysqld with the --skip-name-resolve option and use only localhost and IP numbers in the Host column of the MySQL grant tables.

You can force a MySQL client to use a named pipe connection rather than TCP/IP by specifying the --pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket option to specify the name of the pipe.

2.3.14. Troubleshooting a MySQL Installation Under Windows

When installing and running MySQL for the first time, you may encounter certain errors that prevent the MySQL server from starting. The purpose of this section is to help you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the error log to record information relevant to the error that is preventing the server from starting. The error log is located in the data directory specified in your my.ini file. The default data directory location is C:\Program Files\MySQL\MySQL Server 5.1\data. See Section 5.11.1, “The Error Log”.

Another source of information regarding possible errors is the console messages displayed when the MySQL service is starting. Use the NET START mysql command from the command line after installing mysqld as a service to see any error messages regarding the starting of the MySQL server as a service. See Section 2.3.12, “Starting MySQL as a Windows Service”.

The following are examples of some of the more common error messages you may encounter when installing MySQL and starting the server for the first time:

  • System error 1067 has occurred.
    Fatal error: Can't open privilege tables: Table 'mysql.host' doesn't exist
    

    These messages occur when the MySQL server cannot find the mysql privileges database or other critical files. This error is often encountered when the MySQL base or data directories are installed in different locations than the default locations (C:\mysql and C:\Program Files\MySQL\MySQL Server 5.1\data, respectively).

    One situation when this may occur is when MySQL is upgraded and installed to a new location, but the configuration file is not updated to reflect the new install location. In addition there may be old and new configuration files that conflict, be sure to delete or rename any old configuration files when upgrading MySQL.

    If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server 5.1 you need to ensure that the MySQL server is aware of this through the use of a configuration (my.ini) file. The my.ini file needs to be located in your Windows directory, typically C:\WINNT or C:\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable by issuing the following command from the command prompt:

    C:\> echo %WINDIR%
    

    An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL is installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and set up a [mysqld] section to specify values for the basedir and datadir parameters:

    [mysqld]
    # set basedir to your installation path
    basedir=E:/mysql
    # set datadir to the location of your data directory
    datadir=D:/MySQLdata
    

    Note that Windows pathnames are specified in option files using (forward) slashes rather than backslashes. If you do use backslashes, you must double them:

    [mysqld]
    # set basedir to your installation path
    basedir=C:\\Program Files\\MySQL\\MySQL Server 5.1
    # set datadir to the location of your data directory
    datadir=D:\\MySQLdata
    

    If you change the datadir value in your MySQL configuration file, you must move the contents of the existing MySQL data directory before restarting the MySQL server.

    See Section 2.3.8, “Creating an Option File”.

  • Error: Cannot create Windows service for MySql. Error: 0
    

    This error is encountered when you re-install or upgrade MySQL without first stopping and removing the existing MySQL service and install MySQL using the MySQL Configuration Wizard. This happens because when the Configuration Wizard tries to install the service it finds an existing service with the same name.

    One solution to this problem is to choose a service name other than mysql when using the configuration wizard. This will allow the new service to be installed correctly, but leaves the outdated service in place. Although this is harmless, it is best to remove old services that are no longer in use.

    To permanently remove the old mysql service, execute the following command as a user with administrative privileges, on the command-line:

    C:\>sc delete mysql
    [SC] DeleteService SUCCESS
    

    If the sc utility is not available for your version of Windows, download the delsrv utility from http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv mysql syntax.

2.3.15. Upgrading MySQL on Windows

This section lists some of the steps you should take when upgrading MySQL on Windows.

  1. You should always back up your current MySQL installation before performing an upgrade. See Section 5.9.1, “Database Backups”.

  2. Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.

  3. Before upgrading MySQL, you must stop the server.

    If the server is installed as a service, stop the service with the following command from the command prompt:

    C:\> NET STOP MYSQL
    

    If you are not running the MySQL server as a service, use the following command to stop the server:

    C:\> C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin -u root shutdown
    
  4. When upgrading to MySQL 5.1 from a version previous to 4.1.5, or when upgrading from a version of MySQL installed from a Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you must manually remove the previous installation and MySQL service (if the server is installed as a service).

    To remove the MySQL service, use the following command:

    C:\> C:\mysql\bin\mysqld --remove
    

    If you do not remove the existing service, the MySQL Installation Wizard may fail to properly install the new MySQL service.

  5. If you are using the MySQL Installation Wizard, start the wizard as described in Section 2.3.4, “Using the MySQL Installation Wizard”.

  6. If you are installing MySQL from a Zip archive, extract the archive. You may either overwrite your existing MySQL installation (usually located at C:\mysql), or install it into a different directory, such as C:\mysql4. Overwriting the existing installation is recommended.

  7. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or invoke mysqld directly otherwise.

  8. Refer to Section 2.10, “Upgrading MySQL”, for additional information on upgrading MySQL that is not specific to Windows.

  9. If you encounter errors, see Section 2.3.14, “Troubleshooting a MySQL Installation Under Windows”.

2.3.16. MySQL on Windows Compared to MySQL on Unix

MySQL for Windows has proven itself to be very stable. The Windows version of MySQL has the same features as the corresponding Unix version, with the following exceptions:

  • Windows 95 and threads

    Windows 95 leaks about 200 bytes of main memory for each thread creation. Each connection in MySQL creates a new thread, so you shouldn't run mysqld for an extended time on Windows 95 if your server handles many connections! Other versions of Windows don't suffer from this bug.

  • Limited number of ports

    Windows systems have about 4,000 ports available for client connections, and after a connection on a port closes, it takes two to four minutes before the port can be reused. In situations where clients connect to and disconnect from the server at a high rate, it is possible for all available ports to be used up before closed ports become available again. If this happens, the MySQL server appears to be unresponsive even though it is running. Note that ports may be used by other applications running on the machine as well, in which case the number of ports available to MySQL is lower.

    For more information, see http://support.microsoft.com/default.aspx?scid=kb;en-us;196271.

  • Concurrent reads

    MySQL depends on the pread() and pwrite() system calls to be able to mix INSERT and SELECT. Currently we use mutexes to emulate pread() and pwrite(). We intend to replace the file level interface with a virtual interface in the future so that we can use the readfile()/writefile() interface on NT, 2000, and XP to get more speed. The current implementation limits the number of open files MySQL 5.1 can use to 2,048, which means that you cannot run as many concurrent threads on Windows NT, 2000, XP, and 2003 as on Unix.

  • Blocking read

    MySQL uses a blocking read for each connection, which has the following implications if named pipe connections are enabled:

    • A connection is not disconnected automatically after eight hours, as happens with the Unix version of MySQL.

    • If a connection hangs, it is not possible to break it without killing MySQL.

    • mysqladmin kill does not work on a sleeping connection.

    • mysqladmin shutdown cannot abort as long as there are sleeping connections.

    We plan to fix this problem in the future.

  • ALTER TABLE

    While you are executing an ALTER TABLE statement, the table is locked from being used by other threads. This has to do with the fact that on Windows, you can't delete a file that is in use by another thread. In the future, we may find some way to work around this problem.

  • DROP TABLE

    DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE handler does the table mapping hidden from the upper layer of MySQL. Because Windows does not allow dropping files that are open, you first must flush all MERGE tables (with FLUSH TABLES) or drop the MERGE table before dropping the table.

  • DATA DIRECTORY and INDEX DIRECTORY

    The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ignored on Windows, because Windows doesn't support symbolic links. These options also are ignored on systems that have a non-functional realpath() call.

  • DROP DATABASE

    You cannot drop a database that is in use by some thread.

  • Killing MySQL from the Task Manager

    You cannot kill MySQL from the Task Manager or with the shutdown utility in Windows 95. You must stop it with mysqladmin shutdown.

  • Case-insensitive names

    Filenames are not case sensitive on Windows, so MySQL database and table names are also not case sensitive on Windows. The only restriction is that database and table names must be specified using the same case throughout a given statement. See Section 9.2.2, “Identifier Case Sensitivity”.

  • The ‘\’ pathname separator character

    Pathname components in Windows are separated by the ‘\’ character, which is also the escape character in MySQL. If you are using LOAD DATA INFILE or SELECT ... INTO OUTFILE, use Unix-style filenames with ‘/’ characters:

    mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
    mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;
    

    Alternatively, you must double the ‘\’ character:

    mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
    mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;
    
  • Problems with pipes.

    Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character ^Z / CHAR(24), Windows thinks it has encountered end-of-file and aborts the program.

    This is mainly a problem when you try to apply a binary log as follows:

    C:\> mysqlbinlog binary-log-name | mysql --user=root
    

    If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character, you can use the following workaround:

    C:\> mysqlbinlog binary-log-file --result-file=/tmp/bin.sql
    C:\> mysql --user=root --execute "source /tmp/bin.sql"
    

    The latter command also can be used to reliably read in any SQL file that may contain binary data.

  • Access denied for user error

    If you attempt to run a MySQL client program to connect to a server running on the same machine, but get the error Access denied for user 'some-user'@'unknown' to database 'mysql', this means that MySQL cannot resolve your hostname properly.

    To fix this, you should create a file named \windows\hosts containing the following information:

    127.0.0.1       localhost
    

Here are some open issues for anyone who might want to help us improve MySQL on Windows:

  • Add macros to use the faster thread-safe increment/decrement methods provided by Windows.

2.4. Installing MySQL on Linux

The recommended way to install MySQL on Linux is by using the RPM packages. The MySQL RPMs are currently built on a SuSE Linux 7.3 system, but should work on most versions of Linux that support rpm and use glibc. To obtain RPM packages, see Section 2.1.3, “How to Get MySQL”.

MySQL AB does provide some platform-specific RPMs; the difference between a platform-specific RPM and a generic RPM is that the platform-specific RPMs are built on the targeted platform and are linked dynamically whereas the generic RPM is linked statically with LinuxThreads.

Note: RPM distributions of MySQL often are provided by other vendors. Be aware that they may differ in features and capabilities from those built by MySQL AB, and that the instructions in this manual do not necessarily apply to installing them. The vendor's instructions should be consulted instead.

If you have problems with an RPM file (for example, if you receive the error “Sorry, the host 'xxxx' could not be looked up”), see Section 2.12.1.2, “Linux Binary Distribution Notes”.

In most cases, you only need to install the MySQL-server and MySQL-client packages to get a functional MySQL installation. The other packages are not required for a standard installation. If you want to run a MySQL-Max server that has additional capabilities, you should also install the MySQL-Max RPM. However, you should do so only after installing the MySQL-server RPM. See Section 5.1.2, “The mysqld-max Extended MySQL Server”.

If you get a dependency failure when trying to install MySQL packages (for example, “error: removing these packages would break dependencies: libmysqlclient.so.10 is needed by ...”), you should also install the package MySQL-shared-compat, which includes both the shared libraries for backward compatibility (libmysqlclient.so.12 for MySQL 4.0 and libmysqlclient.so.10 for MySQL 3.23).

Many Linux distributions still ship with MySQL 3.23 and they usually link applications dynamically to save disk space. If these shared libraries are in a separate package (for example, MySQL-shared), it is sufficient to simply leave this package installed and just upgrade the MySQL server and client packages (which are statically linked and do not depend on the shared libraries). For distributions that include the shared libraries in the same package as the MySQL server (for example, Red Hat Linux), you could either install our 3.23 MySQL-shared RPM, or use the MySQL-shared-compat package instead.

The following RPM packages are available:

  • MySQL-server-VERSION.i386.rpm

    The MySQL server. You need this unless you only want to connect to a MySQL server running on another machine. Note: Server RPM files were called MySQL-VERSION.i386.rpm before MySQL 4.0.10. That is, they did not have -server in the name.

  • MySQL-Max-VERSION.i386.rpm

    The MySQL-Max server. This server has additional capabilities that the one provided in the MySQL-server RPM does not. You must install the MySQL-server RPM first, because the MySQL-Max RPM depends on it.

  • MySQL-client-VERSION.i386.rpm

    The standard MySQL client programs. You probably always want to install this package.

  • MySQL-bench-VERSION.i386.rpm

    Tests and benchmarks. Requires Perl and the DBD::mysql module.

  • MySQL-devel-VERSION.i386.rpm

    The libraries and include files that are needed if you want to compile other MySQL clients, such as the Perl modules.

  • MySQL-shared-VERSION.i386.rpm

    This package contains the shared libraries (libmysqlclient.so*) that certain languages and applications need to dynamically load and use MySQL.

  • MySQL-shared-compat-VERSION.i386.rpm

    This package includes the shared libraries for both MySQL 3.23 and MySQL 4.0. Install this package instead of MySQL-shared if you have applications installed that are dynamically linked against MySQL 3.23 but you want to upgrade to MySQL 4.0 without breaking the library dependencies. This package has been available since MySQL 4.0.13.

  • MySQL-embedded-VERSION.i386.rpm

    The embedded MySQL server library (from MySQL 4.0).

  • MySQL-VERSION.src.rpm

    This contains the source code for all of the previous packages. It can also be used to rebuild the RPMs on other architectures (for example, Alpha or SPARC).

To see all files in an RPM package (for example, a MySQL-server RPM), run:

shell> rpm -qpl MySQL-server-VERSION.i386.rpm

To perform a standard minimal installation, run:

shell> rpm -i MySQL-server-VERSION.i386.rpm
shell> rpm -i MySQL-client-VERSION.i386.rpm

To install just the client package, run:

shell> rpm -i MySQL-client-VERSION.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. If you would like to learn more about this feature, see Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG.

The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login account for a user named mysql (if one does not exist) to use for running the MySQL server, and creates the appropriate entries in /etc/init.d/ to start the server automatically at boot time. (This means that if you have performed a previous installation and have made changes to its startup script, you may want to make a copy of the script so that you don't lose it when you install a newer RPM.) See Section 2.9.2.2, “Starting and Stopping MySQL Automatically”, for more information on how MySQL can be started automatically on system startup.

If you want to install the MySQL RPM on older Linux distributions that do not support initialization scripts in /etc/init.d (directly or via a symlink), you should create a symbolic link that points to the location where your initialization scripts actually are installed. For example, if that location is /etc/rc.d/init.d, use these commands before installing the RPM to create /etc/init.d as a symbolic link that points there:

shell> cd /etc
shell> ln -s rc.d/init.d .

However, all current major Linux distributions should support the new directory layout that uses /etc/init.d, because it is required for LSB (Linux Standard Base) compliance.

If the RPM files that you install include MySQL-server, the mysqld server should be up and running after installation. You should be able to start using MySQL.

If something goes wrong, you can find more information in the binary installation section. See Section 2.7, “Installing MySQL on Other Unix-Like Systems”.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.9, “Post-Installation Setup and Testing”.

2.5. Installing MySQL on Mac OS X

You can install MySQL on Mac OS X 10.2.x (“Jaguar”) and up using a Mac OS X binary package in PKG format instead of the binary tarball distribution. Please note that older versions of Mac OS X (for example, 10.1.x) are not supported by this package.

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking its icon in the Finder. It should then mount the image and display its contents.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

Note: Before proceeding with the installation, be sure to shut down all running MySQL server instances by either using the MySQL Manager Application (on Mac OS X Server) or via mysqladmin shutdown on the command line.

To actually install the MySQL PKG file, double-click on the package icon. This launches the Mac OS X Package Installer, which guides you through the installation of MySQL.

Due to a bug in the Mac OS X package installer, you may see this error message in the destination disk selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, simply click the Go Back button once to return to the previous screen. Then click Continue to advance to the destination disk selection again, and you should be able to choose the destination disk correctly. We have reported this bug to Apple and it is investigating this problem.

The Mac OS X PKG of MySQL installs itself into /usr/local/mysql-VERSION and also installs a symbolic link, /usr/local/mysql, pointing to the new location. If a directory named /usr/local/mysql exists, it is renamed to /usr/local/mysql.bak first. Additionally, the installer creates the grant tables in the mysql database by executing mysql_install_db after the installation.

The installation layout is similar to that of a tar file binary distribution; all MySQL binaries are located in the directory /usr/local/mysql/bin. The MySQL socket file is created as /tmp/mysql.sock by default. See Section 2.1.5, “Installation Layouts”.

MySQL installation requires a Mac OS X user account named mysql. A user account with this name should exist by default on Mac OS X 10.2 and up.

If you are running Mac OS X Server, you have a version of MySQL installed. The versions of MySQL that ship with Mac OS X Server versions are shown in the following table:

Mac OS X Server VersionMySQL Version
10.2-10.2.23.23.51
10.2.3-10.2.63.23.53
10.34.0.14
10.3.24.0.16
10.4.04.1.10a

This manual section covers the installation of the official MySQL Mac OS X PKG only. Make sure to read Apple's help information about installing MySQL: Run the “Help View” application, select “Mac OS X Server” help, do a search for “MySQL,” and read the item entitled “Installing MySQL.

For pre-installed versions of MySQL on Mac OS X Server, note especially that you should start mysqld with safe_mysqld instead of mysqld_safe if MySQL is older than version 4.0.

If you previously used Marc Liyanage's MySQL packages for Mac OS X from http://www.entropy.ch, you can simply follow the update instructions for packages using the binary installation layout as given on his pages.

If you are upgrading from Marc's 3.23.xx versions or from the Mac OS X Server version of MySQL to the official MySQL PKG, you also need to convert the existing MySQL privilege tables to the current format, because some new security privileges have been added. See Section 2.10.2, “Upgrading the Grant Tables”.

If you would like to automatically start up MySQL during system startup, you also need to install the MySQL Startup Item. For MySQL 5.1, it is part of the Mac OS X installation disk images as a separate installation package. Simply double-click the MySQLStartupItem.pkg icon and follow the instructions to install it.

Note that the Startup Item need be installed only once! There is no need to install it each time you upgrade the MySQL package later.

The Startup Item for MySQL 5.1 is installed into /Library/StartupItems/MySQLCOM. (Before MySQL 4.1.2, the location was /Library/StartupItems/MySQL, but that collided with the MySQL Startup Item installed by Mac OS X Server.) Startup Item installation adds a variable MYSQLCOM=-YES- to the system configuration file /etc/hostconfig. If you would like to disable the automatic startup of MySQL, simply change this variable to MYSQLCOM=-NO-.

On Mac OS X Server, the default MySQL installation uses the variable MYSQL in the /etc/hostconfig file. The MySQL AB Startup Item installer disables this variable by setting it to MYSQL=-NO-. This avoids boot time conflicts with the MYSQLCOM variable used by the MySQL AB Startup Item. However, it does not shut down a running MySQL server. You should do that yourself.

After the installation, you can start up MySQL by running the following commands in a terminal window. You must have administrator privileges to perform this task.

If you have installed the Startup Item:

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
(Enter your password, if necessary)
(Press Control-D or enter "exit" to exit the shell)

If you don't use the Startup Item, enter the following command sequence:

shell> cd /usr/local/mysql
shell> sudo ./bin/mysqld_safe
(Enter your password, if necessary)
(Press Control-Z)
shell> bg
(Press Control-D or enter "exit" to exit the shell)

You should be able to connect to the MySQL server, for example, by running /usr/local/mysql/bin/mysql.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.9, “Post-Installation Setup and Testing”.

You might want to add aliases to your shell's resource file to make it easier to access commonly used programs such as mysql and mysqladmin from the command line. The syntax for tcsh is:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

For bash, use:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. For example, add the following line to your $HOME/.tcshrc file if your shell is tcsh:

setenv PATH ${PATH}:/usr/local/mysql/bin

If no .tcshrc file exists in your home directory, create it with a text editor.

If you are upgrading an existing installation, please note that installing a new MySQL PKG does not remove the directory of an older installation. Unfortunately, the Mac OS X Installer does not yet offer the functionality required to properly upgrade previously installed packages.

To use your existing databases with the new installation, you'll need to copy the contents of the old data directory to the new data directory. Make sure that neither the old server nor the new one is running when you do this. After you have copied over the MySQL database files from the previous installation and have successfully started the new server, you should consider removing the old installation files to save disk space. Additionally, you should also remove older versions of the Package Receipt directories located in /Library/Receipts/mysql-VERSION.pkg.

2.6. Installing MySQL on NetWare

Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers should be pleased to note that NetWare 6.5 ships with bundled MySQL binaries, complete with an automatic commercial use license for all servers running that version of NetWare.

MySQL for NetWare is compiled using a combination of Metrowerks CodeWarrior for NetWare and special cross-compilation versions of the GNU autotools.

The latest binary packages for NetWare can be obtained at http://dev.mysql.com/downloads/. See Section 2.1.3, “How to Get MySQL”.

In order to host MySQL, the NetWare server must meet these requirements:

  • Latest Support Pack of NetWare 6.5 installed.

  • The system must meet Novell's minimum requirements to run the respective version of NetWare.

  • MySQL data, as well as the binaries themselves, must be installed on an NSS volume; traditional volumes are not supported.

To install MySQL for NetWare, use the following procedure:

  1. If you are upgrading from a prior installation, stop the MySQL server. This is done from the server console, using the following command:

    SERVER:  mysqladmin -u root shutdown
    
  2. Log on to the target server from a client machine with access to the location where you are installing MySQL.

  3. Extract the binary package Zip file onto the server. Be sure to allow the paths in the Zip file to be used. It is safe to simply extract the file to SYS:\.

    If you are upgrading from a prior installation, you may need to copy the data directory (for example, SYS:MYSQL\DATA), as well as my.cnf, if you have customized it. You can then delete the old copy of MySQL.

  4. You might want to rename the directory to something more consistent and easy to use. The examples iin this manual use SYS:MYSQL to refer to the installation directory.

    Note that MySQL installation on NetWare does not detect if a version of MySQL is already installed outside the NetWare release. Therefore, if you have installed the latest MySQL version from the Web (for example, MySQL 4.1 or later) in SYS:\MYSQL, you must rename the folder before upgrading the NetWare server; otherwise, files in SYS:\MySQL are overwritten by the MySQL version present in NetWare Support Pack.

  5. At the server console, add a search path for the directory containing the MySQL NLMs. For example:

    SERVER:  SEARCH ADD SYS:MYSQL\BIN
    
  6. Initialize the data directory and the grant tables, if needed, by executing mysql_install_db at the server console.

  7. Start the MySQL server using mysqld_safe at the server console.

  8. To finish the installation, you should also add the following commands to autoexec.ncf. For example, if your MySQL installation is in SYS:MYSQL and you want MySQL to start automatically, you could add these lines:

    #Starts the MySQL 5.1.x database server
    SEARCH ADD SYS:MYSQL\BIN
    MYSQLD_SAFE
    

    If you are running MySQL on NetWare 6.0, we strongly suggest that you use the --skip-external-locking option on the command line:

    #Starts the MySQL 5.1.x database server
    SEARCH ADD SYS:MYSQL\BIN
    MYSQLD_SAFE --skip-external-locking
    

    It is also necessary to use CHECK TABLE and REPAIR TABLE instead of myisamchk, because myisamchk makes use of external locking. External locking is known to have problems on NetWare 6.0; the problem has been eliminated in NetWare 6.5.

    mysqld_safe on NetWare provides a screen presence. When you unload (shut down) the mysqld_safe NLM, the screen does not by default go away. Instead, it prompts for user input:

    *<NLM has terminated; Press any key to close the screen>*
    

    If you want NetWare to close the screen automatically instead, use the --autoclose option to mysqld_safe. For example:

    #Starts the MySQL 5.1.x database server
    SEARCH ADD SYS:MYSQL\BIN
    MYSQLD_SAFE --autoclose
    
  9. When installing MySQL version 5.1 either for the first time or upgrading from a previous version, download and install the latest and appropriate Perl module and PHP extension:

The behavior of mysqld_safe on NetWare is described further in Section 5.1.3, “mysqld_safe — MySQL Server Startup Script”.

If there was an existing installation of MySQL on the server, be sure to check for existing MySQL startup commands in autoexec.ncf, and edit or delete them as necessary.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.9, “Post-Installation Setup and Testing”.

2.7. Installing MySQL on Other Unix-Like Systems

This section covers the installation of MySQL binary distributions that are provided for various platforms in the form of compressed tar files (files with a .tar.gz extension). See Section 2.1.2.5, “MySQL Binaries Compiled by MySQL AB”, for a detailed list.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

MySQL tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz, where VERSION is a number (for example, 5.1.5-alpha), and OS indicates the type of operating system for which the distribution is intended (for example, pc-linux-i686).

In addition to these generic packages, we also offer binaries in platform-specific package formats for selected platforms. See Section 2.2, “Standard MySQL Installation Using a Binary Distribution”, for more information on how to install these.

You need the following tools to install a MySQL tar file binary distribution:

  • GNU gunzip to uncompress the distribution.

  • A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating systems come with a pre-installed version of tar that is known to have problems. For example, Mac OS X tar and Sun tar are known to have problems with long filenames. On Mac OS X, you can use the pre-installed gnutar program. On other systems with a deficient tar, you should install GNU tar first.

If you run into problems and need to file a bug report, please use the instructions in Section 1.8, “How to Report Bugs or Problems”.

The basic commands which you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> cd /usr/local
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root  .
shell> chown -R mysql data
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &

Note: This procedure does not set up any passwords for MySQL accounts. After following the procedure, proceed to Section 2.9, “Post-Installation Setup and Testing”.

A more detailed version of the preceding description for installing a binary distribution follows:

  1. Add a login user and group for mysqld to run as:

    shell> groupadd mysql
    shell> useradd -g mysql mysql
    

    These commands add the mysql group and the mysql user. The syntax for useradd and groupadd may differ slightly on different versions of Unix. They may also be called adduser and addgroup.

    You might want to call the user and group something else instead of mysql. If so, substitute the appropriate name in the following steps.

  2. Pick the directory under which you want to unpack the distribution, and change location into it. In the following example, we unpack the distribution under /usr/local. (The instructions, therefore, assume that you have permission to create files and directories in /usr/local. If that directory is protected, you need to perform the installation as root.)

    shell> cd /usr/local
    
  3. Obtain a distribution file from one of the sites listed in Section 2.1.3, “How to Get MySQL”. For a given release, binary distributions for all platforms are built from the same MySQL source distribution.

  4. Unpack the distribution, which creates the installation directory. Then create a symbolic link to that directory:

    shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
    shell> ln -s full-path-to-mysql-VERSION-OS mysql
    

    The tar command creates a directory named mysql-VERSION-OS. The ln command makes a symbolic link to that directory. This lets you refer more easily to the installation directory as /usr/local/mysql.

    With GNU tar, no separate invocation of gunzip is necessary. You can replace the first line with the following alternative command to uncompress and extract the distribution:

    shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
    
  5. Change location into the installation directory:

    shell> cd mysql
    

    You can find several files and subdirectories in the mysql directory. The most important for installation purposes are the bin and scripts subdirectories.

    • bin

      This directory contains client programs and the server. You should add the full pathname of this directory to your PATH environment variable so that your shell finds the MySQL programs properly. See Appendix F, Environment Variables.

    • scripts

      This directory contains the mysql_install_db script used to initialize the mysql database containing the grant tables that store the server access permissions.

  6. If you have not installed MySQL before, you must create the MySQL grant tables:

    shell> scripts/mysql_install_db --user=mysql
    

    If you run the command as root, you should use the --user option as shown. The value of the option should be the name of the login account that you created in the first step to use for running the server. If you run the command while logged in as that user, you can omit the --user option.

    After creating or updating the grant tables, you need to restart the server manually.

  7. Change the ownership of program binaries to root and ownership of the data directory to the user that you run mysqld as. Assuming that you are located in the installation directory (/usr/local/mysql), the commands look like this:

    shell> chown -R root  .
    shell> chown -R mysql data
    shell> chgrp -R mysql .
    

    The first command changes the owner attribute of the files to the root user. The second changes the owner attribute of the data directory to the mysql user. The third changes the group attribute to the mysql group.

  8. If you would like MySQL to start automatically when you boot your machine, you can copy support-files/mysql.server to the location where your system has its startup files. More information can be found in the support-files/mysql.server script itself and in Section 2.9.2.2, “Starting and Stopping MySQL Automatically”.

  9. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI and DBD::mysql Perl modules. For instructions, see Section 2.13, “Perl Installation Notes”.

  10. If you would like to use mysqlaccess and have the MySQL distribution in some non-standard location, you must change the location where mysqlaccess expects to find the mysql client. Edit the bin/mysqlaccess script at approximately line 18. Search for a line that looks like this:

    $MYSQL     = '/usr/local/bin/mysql';    # path to mysql executable
    

    Change the path to reflect the location where mysql actually is stored on your system. If you do not do this, a Broken pipe error will occur when you run mysqlaccess.

After everything has been unpacked and installed, you should test your distribution.

You can start the MySQL server with the following command:

shell> bin/mysqld_safe --user=mysql &

More information about mysqld_safe is given in Section 5.1.3, “mysqld_safe — MySQL Server Startup Script”.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.9, “Post-Installation Setup and Testing”.

2.8. MySQL Installation Using a Source Distribution

Before you proceed with the source installation, check first to see whether our binary is available for your platform and whether it works for you. We put a lot of effort into making sure that our binaries are built with the best possible options.

To obtain a source distribution for MySQL, Section 2.1.3, “How to Get MySQL”.

MySQL source distributions are provided as compressed tar archives and have names of the form mysql-VERSION.tar.gz, where VERSION is a number like 5.1.5-alpha.

You need the following tools to build and install MySQL from source:

  • GNU gunzip to uncompress the distribution.

  • A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating systems come with a pre-installed version of tar that is known to have problems. For example, Mac OS X tar and Sun tar are known to have problems with long filenames. On Mac OS X, you can use the pre-installed gnutar program. On other systems with a deficient tar, you should install GNU tar first.

  • A working ANSI C++ compiler. gcc 2.95.2 or later, egcs 1.0.2 or later or egcs 2.91.66, SGI C++, and SunPro C++ are some of the compilers that are known to work. libg++ is not needed when using gcc. gcc 2.7.x has a bug that makes it impossible to compile some perfectly legal C++ files, such as sql/sql_base.cc. If you have only gcc 2.7.x, you must upgrade your gcc to be able to compile MySQL. gcc 2.8.1 is also known to have problems on some platforms, so it should be avoided if a new compiler exists for the platform.

    gcc 2.95.2 or later is recommended when compiling MySQL 3.23.x.

  • A good make program. GNU make is always recommended and is sometimes required. If you have problems, we recommend trying GNU make 3.75 or newer.

If you are using a version of gcc recent enough to understand the -fno-exceptions option, it is very important that you use this option. Otherwise, you may compile a binary that crashes randomly. We also recommend that you use -felide-constructors and -fno-rtti along with -fno-exceptions. When in doubt, do the following:

CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors \
       -fno-exceptions -fno-rtti" ./configure \
       --prefix=/usr/local/mysql --enable-assembler \
       --with-mysqld-ldflags=-all-static

On most systems, this gives you a fast and stable binary.

If you run into problems and need to file a bug report, please use the instructions in Section 1.8, “How to Report Bugs or Problems”.

2.8.1. Source Installation Overview

The basic commands you must execute to install a MySQL source distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -
shell> cd mysql-VERSION
shell> ./configure --prefix=/usr/local/mysql
shell> make
shell> make install
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> cd /usr/local/mysql
shell> bin/mysql_install_db --user=mysql
shell> chown -R root  .
shell> chown -R mysql var
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &

If you start from a source RPM, do the following:

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

This makes a binary RPM that you can install. For older versions of RPM, you may have to replace the command rpmbuild with rpm instead.

Note: This procedure does not set up any passwords for MySQL accounts. After following the procedure, proceed to Section 2.9, “Post-Installation Setup and Testing”, for post-installation setup and testing.

A more detailed version of the preceding description for installing MySQL from a source distribution follows:

  1. Add a login user and group for mysqld to run as:

    shell> groupadd mysql
    shell> useradd -g mysql mysql
    

    These commands add the mysql group and the mysql user. The syntax for useradd and groupadd may differ slightly on different versions of Unix. They may also be called adduser and addgroup.

    You might want to call the user and group something else instead of mysql. If so, substitute the appropriate name in the following steps.

  2. Pick the directory under which you want to unpack the distribution, and change location into it.

  3. Obtain a distribution file from one of the sites listed in Section 2.1.3, “How to Get MySQL”.

  4. Unpack the distribution into the current directory:

    shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -
    

    This command creates a directory named mysql-VERSION.

    With GNU tar, no separate invocation of gunzip is necessary. You can use the following alternative command to uncompress and extract the distribution:

    shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
    
  5. Change location into the top-level directory of the unpacked distribution:

    shell> cd mysql-VERSION
    

    Note that currently you must configure and build MySQL from this top-level directory. You cannot build it in a different directory.

  6. Configure the release and compile everything:

    shell> ./configure --prefix=/usr/local/mysql
    shell> make
    

    When you run configure, you might want to specify some options. Run ./configure --help for a list of options. Section 2.8.2, “Typical configure Options”, discusses some of the more useful options.

    If configure fails and you are going to send mail to a MySQL mailing list to ask for assistance, please include any lines from config.log that you think can help solve the problem. Also include the last couple of lines of output from configure. To file a bug report, please use the instructions at Section 1.8, “How to Report Bugs or Problems”.

    If the compile fails, see Section 2.8.4, “Dealing with Problems Compiling MySQL”, for help.

  7. Install the distribution:

    shell> make install
    

    If you want to set up an option file, use one of those present in the support-files directory as a template. For example:

    shell> cp support-files/my-medium.cnf /etc/my.cnf
    

    You might need to run these commands as root.

    If you want to configure support for InnoDB tables, you should edit the /etc/my.cnf file, remove the # character before the option lines that start with innodb_..., and modify the option values to be what you want. See Section 4.3.2, “Using Option Files”, and Section 15.2.3, “InnoDB Configuration”.

  8. Change location into the installation directory:

    shell> cd /usr/local/mysql
    
  9. If you haven't installed MySQL before, you must create the MySQL grant tables:

    shell> bin/mysql_install_db --user=mysql
    

    If you run the command as root, you should use the --user option as shown. The value of the option should be the name of the login account that you created in the first step to use for running the server. If you run the command while logged in as that user, you can omit the --user option.

    Note that you must restart the server manually after using mysql_install_db to create the grant tables for MySQL.

  10. Change the ownership of program binaries to root and ownership of the data directory to the user that you run mysqld as. Assuming that you are located in the installation directory (/usr/local/mysql), the commands look like this:

    shell> chown -R root  .
    shell> chown -R mysql var
    shell> chgrp -R mysql .
    

    The first command changes the owner attribute of the files to the root user. The second changes the owner attribute of the data directory to the mysql user. The third changes the group attribute to the mysql group.

  11. If you would like MySQL to start automatically when you boot your machine, you can copy support-files/mysql.server to the location where your system has its startup files. More information can be found in the support-files/mysql.server script itself; see also Section 2.9.2.2, “Starting and Stopping MySQL Automatically”.

  12. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI and DBD::mysql Perl modules. For instructions, see Section 2.13, “Perl Installation Notes”.

After everything has been installed, you should initialize and test your distribution using this command:

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

If that command fails immediately and prints mysqld ended, you can find some information in the host_name.err file in the data directory.

More information about mysqld_safe is given in Section 5.1.3, “mysqld_safe — MySQL Server Startup Script”.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.9, “Post-Installation Setup and Testing”.

2.8.2. Typical configure Options

The configure script gives you a great deal of control over how you configure a MySQL source distribution. Typically you do this using options on the configure command line. You can also affect configure using certain environment variables. See Appendix F, Environment Variables. For a list of options supported by configure, run this command:

shell> ./configure --help

Some of the more commonly used configure options are described here:

  • To compile just the MySQL client libraries and client programs and not the server, use the --without-server option:

    shell> ./configure --without-server
    

    If you don't have a C++ compiler, mysql cannot be compiled (it is the one client program that requires C++). In this case, you can remove the code in configure that tests for the C++ compiler and then run ./configure with the --without-server option. The compile step should still try to build mysql, but you can ignore any warnings about mysql.cc. (If make stops, try make -k to tell it to continue with the rest of the build even if errors occur.)

  • If you want to build the embedded MySQL library (libmysqld.a) you should use the --with-embedded-server option.

  • If you don't want your log files and database directories located under /usr/local/var, use a configure command something like one of these:

    shell> ./configure --prefix=/usr/local/mysql
    shell> ./configure --prefix=/usr/local \
               --localstatedir=/usr/local/mysql/data
    

    The first command changes the installation prefix so that everything is installed under /usr/local/mysql rather than the default of /usr/local. The second command preserves the default installation prefix, but overrides the default location for database directories (normally /usr/local/var) and changes it to /usr/local/mysql/data. After you have compiled MySQL, you can change these options with option files. See Section 4.3.2, “Using Option Files”.

  • If you are using Unix and you want the MySQL socket located somewhere other than the default location (normally in the directory /tmp or /var/run), use a configure command like this:

    shell> ./configure \
               --with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock
    

    The socket filename must be an absolute pathname. You can also change the location of mysql.sock later by using a MySQL option file. See Section A.4.5, “How to Protect or Change the MySQL Socket File /tmp/mysql.sock.

  • If you want to compile statically linked programs (for example, to make a binary distribution, to get more speed, or to work around problems with some Red Hat Linux distributions), run configure like this:

    shell> ./configure --with-client-ldflags=-all-static \
               --with-mysqld-ldflags=-all-static
    
  • If you are using gcc and don't have libg++ or libstdc++ installed, you can tell configure to use gcc as your C++ compiler:

    shell> CC=gcc CXX=gcc ./configure
    

    When you use gcc as your C++ compiler, it does not attempt to link in libg++ or libstdc++. This may be a good idea to do even if you have these libraries installed, because some versions of them have caused strange problems for MySQL users in the past.

    The following list indicates some compilers and environment variable settings that are commonly used with each one.

    • gcc 2.7.2:

      CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors"
      
    • egcs 1.0.3a:

      CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors \
      -fno-exceptions -fno-rtti"
      
    • gcc 2.95.2:

      CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
      -felide-constructors -fno-exceptions -fno-rtti"
      
    • pgcc 2.90.29 or newer:

      CFLAGS="-O3 -mpentiumpro -mstack-align-double" CXX=gcc \
      CXXFLAGS="-O3 -mpentiumpro -mstack-align-double \
      -felide-constructors -fno-exceptions -fno-rtti"
      

    In most cases, you can get a reasonably optimized MySQL binary by using the options from the preceding list and adding the following options to the configure line:

    --prefix=/usr/local/mysql --enable-assembler \
    --with-mysqld-ldflags=-all-static
    

    The full configure line would, in other words, be something like the following for all recent gcc versions:

    CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
    -felide-constructors -fno-exceptions -fno-rtti" ./configure \
    --prefix=/usr/local/mysql --enable-assembler \
    --with-mysqld-ldflags=-all-static
    

    The binaries we provide on the MySQL Web site at http://www.mysql.com/ are all compiled with full optimization and should be perfect for most users. See Section 2.1.2.5, “MySQL Binaries Compiled by MySQL AB”. There are some configuration settings you can tweak to make an even faster binary, but these are only for advanced users. See Section 7.5.4, “How Compiling and Linking Affects the Speed of MySQL”.

    If the build fails and produces errors about your compiler or linker not being able to create the shared library libmysqlclient.so.N (where N is a version number), you can work around this problem by giving the --disable-shared option to configure. In this case, configure does not build a shared libmysqlclient.so.N library.

  • By default, MySQL uses the latin1 (cp1252 West European) character set. To change the default set, use the --with-charset option:

    shell> ./configure --with-charset=CHARSET
    

    CHARSET may be one of big5, cp1251, cp1257, czech, danish, dec8, dos, euc_kr, gb2312, gbk, german1, hebrew, hp8, hungarian, koi8_ru, koi8_ukr, latin1, latin2, sjis, swe7, tis620, ujis, usa7, or win1251ukr. See Section 5.10.1, “The Character Set Used for Data and Sorting”.

    The default collation may also be specified. MySQL uses the latin1_swedish_ci collation by default. To change this, use the --with-collation option:

    shell> ./configure --with-collation=COLLATION
    

    To change both the character set and the collation, use both the --with-charset and --with-collation options. The collation must be a legal collation for the character set. (Use the SHOW COLLATION statement to determine which collations are available for each character set.)

    If you want to convert characters between the server and the client, you should look at the SET CHARACTER SET statement. See Section 13.5.3, “SET Syntax”.

    Warning: If you change character sets after having created any tables, you must run myisamchk -r -q --set-character-set=charset on every table. Your indexes may be sorted incorrectly otherwise. (This can happen if you install MySQL, create some tables, and then reconfigure MySQL to use a different character set and reinstall it.)

    With the configure option --with-extra-charsets=LIST, you can define which additional character sets should be compiled into the server. LIST is one of the following:

    • a list of character set names separated by spaces

    • complex - to include all character sets that can't be dynamically loaded

    • all - to include all character sets into the binaries

  • To configure MySQL with debugging code, use the --with-debug option:

    shell> ./configure --with-debug
    

    This causes a safe memory allocator to be included that can find some errors and that provides output about what is happening. See Section E.1, “Debugging a MySQL Server”.

  • If your client programs are using threads, you also must compile a thread-safe version of the MySQL client library with the --enable-thread-safe-client configure option. This creates a libmysqlclient_r library with which you should link your threaded applications. See Section 25.2.15, “How to Make a Threaded Client”.

  • It is possible to build MySQL with large table support using the --with-big-tables option.

    This option causes the variables used to keep table row counts to be stored using unsigned long long rather than unsigned long. What this does is to allow tables to hold up to approximately 1.844E+19 ((232)2) rows rather than 232 (~4.295E+09) rows. Previously it was necessary to pass -DBIG_TABLES to the compiler manually in order to enable this feature.

  • Options that pertain to particular systems can be found in the system-specific section of this manual. See Section 2.12, “Operating System-Specific Notes”.

2.8.3. Installing from the Development Source Tree

Caution: You should read this section only if you are interested in helping us test our new code. If you just want to get MySQL up and running on your system, you should use a standard release distribution (either a binary or source distribution).

To obtain our most recent development source tree, use these instructions:

  1. Download the BitKeeper free client from http://www.bitmover.com/bk-client.shar.

  2. On Unix, install the free client like this:

    shell> sh bk-client.shar
    shell> cd bk_client-1.1
    shell> make all
    shell> PATH=$PWD:$PATH
    

    On Windows, install it like this:

    • Download and install Cygwin from http://cygwin.com.

    • Make sure gcc and make have been installed under Cygwin. You can test this by issuing which gcc and which make commands. If either one is not installed, run Cygwin's package manager, select gcc, make, or both, and install them.

    • Under Cygwin, perform these steps:

      shell> sh bk-client.shar
      shell> cd bk_client-1.1
      

      Then edit the Makefile and change the line that reads $(CC) $(CFLAGS) -o sfio -lz sfio.c to this:

      $(CC) $(CFLAGS) -o sfio sfio.c -lz
      

      Now run the make command and set the path:

      shell> make all
      shell> PATH=$PWD:$PATH
      
  3. After the BitKeeper free client has been installed, first go to the directory you want to work from, and then use the following command to make a local copy of the MySQL 5.1 branch:

    shell> sfioball -r+ bk://mysql.bkbits.net/mysql-5.1-new mysql-5.1
    

    Normally, you do not have to build the documentation yourself because we already provide it in a number of formats at http://dev.mysql.com/doc/. The formats you can download there (HTML, PDF, etc.) are built on a daily basis, so you gain little by creating them yourself from the DocBook XML base format in the mysqldoc tree. If you would like to copy the documentation repository, anyway, use the following command:

    shell> sfioball -r+ bk://mysql.bkbits.net/mysqldoc mysqldoc
    

    In the preceding example, the source tree is set up in the mysql-5.1/ subdirectory of your current directory.

    The initial download of the source tree may take a while, depending on the speed of your connection. Please be patient.

  4. To update the local copy of the MySQL 5.1 repository, use this command:

    shell> update bk://mysql.bkbits.net/mysql-5.1-new
    
  5. You need GNU make, autoconf 2.58 (or newer), automake 1.8, libtool 1.5, and m4 to run the next set of commands. Even though many operating systems come with their own implementation of make, chances are high that the compilation fails with strange error messages. Therefore, it is highly recommended that you use GNU make (sometimes named gmake) instead.

    Fortunately, a large number of operating systems ship with the GNU toolchain preinstalled or supply installable packages of these. In any case, they can also be downloaded from the following locations:

    To configure MySQL 5.1, you also need GNU bison 1.75 or later. Older versions of bison may report this error:

    sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded
    

    Note: The maximum table size is not actually exceeded; the error is caused by bugs in older versions of bison.

    The following example shows the typical commands required to configure a source tree. The first cd command changes location into the top-level directory of the tree; replace mysql-5.1 with the appropriate directory name.

    shell> cd mysql-5.1
    shell> aclocal; autoheader
    shell> libtoolize --automake --force
    shell> automake --force --add-missing; autoconf
    shell> (cd storage/innobase; aclocal; autoheader; autoconf; automake)
    shell> (cd storage/bdb/dist; sh s_all)
    shell> ./configure  # Add your favorite options here
    shell> make
    

    Or you can use BUILD/autorun.sh as a shortcut for the following sequence of commands:

    shell> aclocal; autoheader
    shell> libtoolize --automake --force
    shell> automake --force --add-missing; autoconf
    shell> (cd storage/innobase; aclocal; autoheader; autoconf; automake)
    shell> (cd storage/bdb/dist; sh s_all)
    

    The command lines that change directory into the innobase and bdb/dist directories are used to configure the InnoDB and Berkeley DB (BDB) storage engines. You can omit these command lines if you to not require InnoDB or BDB support.

    Note: Beginning with MySQL 5.1, code specific to storage engines has been moved under a storage directory. For example, InnoDB code is now found in storage/innobase and NDBCluster code is in storage/ndb.

    If you get some strange errors during this stage, verify that you really have libtool installed.

    A collection of our standard configuration scripts is located in the BUILD/ subdirectory. You may find it more convenient to use the BUILD/compile-pentium-debug script than the preceding set of shell commands. To compile on a different architecture, modify the script by removing flags that are Pentium-specific.

  6. When the build is done, run make install. Be careful with this on a production machine; the command may overwrite your live release installation. If you have another installation of MySQL, we recommend that you run ./configure with different values for the --prefix, --with-tcp-port, and --unix-socket-path options than those used for your production server.

  7. Play hard with your new installation and try to make the new features crash. Start by running make test. See Section 27.1.2, “MySQL Test Suite”.

  8. If you have gotten to the make stage and the distribution does not compile, please report it in our bugs database at http://bugs.mysql.com/. If you have installed the latest versions of the required GNU tools, and they crash trying to process our configuration files, please report that also. However, if you execute aclocal and get a command not found error or a similar problem, do not report it. Instead, make sure that all the necessary tools are installed and that your PATH variable is set correctly so that your shell can find them.

  9. After the initial copying of the repository (sfioball) to obtain the source tree, you should update the repository (update) periodically to get updates.

  10. You can examine the change history for the tree with all the diffs by viewing the BK/ChangeLog file in the source tree and looking at the ChangeSet descriptions listed there. To examine a particular changeset, you would have to use the sfioball command to extract two particular revisions of the source tree, and then use an external diff command to compare them. If you see some funny diffs or code that you have a question about, do not hesitate to send email to the MySQL internals mailing list. See Section 1.7.1, “MySQL Mailing Lists”. Also, if you think you have a better idea on how to do something, send an email message to the same address with a patch.

  11. The BitKeeper free client is shipped with its source code. The only documentation available for the free client is the source code itself.

You can also browse changesets, comments, and source code online. To browse this information for MySQL 5.1, go to http://mysql.bkbits.net:8080/mysql-5.1.

2.8.4. Dealing with Problems Compiling MySQL

All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using gcc. On other systems, warnings may occur due to differences in system include files. See Section 2.8.5, “MIT-pthreads Notes”, for warnings that may occur when using MIT-pthreads. For other problems, check the following list.

The solution to many problems involves reconfiguring. If you do need to reconfigure, take note of the following:

  • If configure is run after it has previously been run, it may use information that was gathered during its previous invocation. This information is stored in config.cache. When configure starts up, it looks for that file and reads its contents if it exists, on the assumption that the information is still correct. That assumption is invalid when you reconfigure.

  • Each time you run configure, you must run make again to recompile. However, you may want to remove old object files from previous builds first because they were compiled using different configuration options.

To prevent old configuration information or object files from being used, run these commands before re-running configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

The following list describes some of the problems when compiling MySQL that have been found to occur most often:

  • If you get errors such as the ones shown here when compiling sql_yacc.cc, you probably have run out of memory or swap space:

    Internal compiler error: program cc1plus got fatal signal 11
    Out of virtual memory
    Virtual memory exhausted
    

    The problem is that gcc requires a huge amount of memory to compile sql_yacc.cc with inline functions. Try running configure with the --with-low-memory option:

    shell> ./configure --with-low-memory
    

    This option causes -fno-inline to be added to the compile line if you are using gcc and -O0 if you are using something else. You should try the --with-low-memory option even if you have so much memory and swap space that you think you can't possibly have run out. This problem has been observed to occur even on systems with generous hardware configurations and the --with-low-memory option usually fixes it.

  • By default, configure picks c++ as the compiler name and GNU c++ links with -lg++. If you are using gcc, that behavior can cause problems during configuration such as this:

    configure: error: installation or configuration problem:
    C++ compiler cannot create executables.
    

    You might also observe problems during compilation related to g++, libg++, or libstdc++.

    One cause of these problems is that you may not have g++, or you may have g++ but not libg++, or libstdc++. Take a look at the config.log file. It should contain the exact reason why your C++ compiler didn't work. To work around these problems, you can use gcc as your C++ compiler. Try setting the environment variable CXX to "gcc -O3". For example:

    shell> CXX="gcc -O3" ./configure
    

    This works because gcc compiles C++ sources as well as g++ does, but does not link in libg++ or libstdc++ by default.

    Another way to fix these problems is to install g++, libg++, and libstdc++. We would, however, like to recommend that you not use libg++ or libstdc++ with MySQL because this only increases the binary size of mysqld without giving you any benefits. Some versions of these libraries have also caused strange problems for MySQL users in the past.

  • If your compile fails with errors such as any of the following, you must upgrade your version of make to GNU make:

    making all in mit-pthreads
    make: Fatal error in reader: Makefile, line 18:
    Badly formed macro assignment
    

    Or:

    make: file `Makefile' line 18: Must be a separator (:
    

    Or:

    pthread.h: No such file or directory
    

    Solaris and FreeBSD are known to have troublesome make programs.

    GNU make 3.75 is known to work.

  • If you want to define flags to be used by your C or C++ compilers, do so by adding the flags to the CFLAGS and CXXFLAGS environment variables. You can also specify the compiler names this way using CC and CXX. For example:

    shell> CC=gcc
    shell> CFLAGS=-O3
    shell> CXX=gcc
    shell> CXXFLAGS=-O3
    shell> export CC CFLAGS CXX CXXFLAGS
    

    See Section 2.1.2.5, “MySQL Binaries Compiled by MySQL AB”, for a list of flag definitions that have been found to be useful on various systems.

  • If you get errors such as those shown here when compiling mysqld, configure did not correctly detect the type of the last argument to accept(), getsockname(), or getpeername():

    cxx: Error: mysqld.cc, line 645: In this statement, the referenced
         type of the pointer value ''length'' is ''unsigned long'',
         which is not compatible with ''int''.
    new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);
    

    To fix this, edit the config.h file (which is generated by configure). Look for these lines:

    /* Define as the base type of the last arg to accept */
    #define SOCKET_SIZE_TYPE XXX
    

    Change XXX to size_t or int, depending on your operating system. (Note that you have to do this each time you run configure because configure regenerates config.h.)

  • The sql_yacc.cc file is generated from sql_yacc.yy. Normally the build process does not need to create sql_yacc.cc, because MySQL comes with a pre-generated copy. However, if you do need to re-create it, you might encounter this error:

    "sql_yacc.yy", line xxx fatal: default action causes potential...
    

    This is a sign that your version of yacc is deficient. You probably need to install bison (the GNU version of yacc) and use that instead.

  • On Debian Linux 3.0, you need to install gawk instead of the default mawk if you want to compile MySQL 5.1 with Berkeley DB support.

  • If you need to debug mysqld or a MySQL client, run configure with the --with-debug option, and then recompile and link your clients with the new client library. See Section E.2, “Debugging a MySQL Client”.

  • If you get a compilation error on Linux (for example, SuSE Linux 8.1 or Red Hat Linux 7.3) similar to the following one:

    libmysql.c:1329: warning: passing arg 5 of `gethostbyname_r' from
    incompatible pointer type
    libmysql.c:1329: too few arguments to function `gethostbyname_r'
    libmysql.c:1329: warning: assignment makes pointer from integer
    without a cast
    make[2]: *** [libmysql.lo] Error 1
    

    By default, the configure script attempts to determine the correct number of arguments by using g++ the GNU C++ compiler. This test yields wrong results if g++ is not installed. There are two ways to work around this problem:

    • Make sure that the GNU C++ g++ is installed. On some Linux distributions, the required package is called gpp; on others, it is named gcc-c++.

    • Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

      export CXX="gcc"
      

    Please note that you need to run configure again afterward.

2.8.5. MIT-pthreads Notes

This section describes some of the issues involved in using MIT-pthreads.

On Linux, you should not use MIT-pthreads. Use the installed LinuxThreads implementation instead. See Section 2.12.1, “Linux Notes”.

If your system does not provide native thread support, you need to build MySQL using the MIT-pthreads package. This includes older FreeBSD systems, SunOS 4.x, Solaris 2.4 and earlier, and some others. See Section 2.1.1, “Operating Systems Supported by MySQL”.

MIT-pthreads is not part of the MySQL 5.1 source distribution. If you require this package, you need to download it separately from http://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After downloading, extract this source archive into the top level of the MySQL source directory. It creates a new subdirectory named mit-pthreads.

  • On most systems, you can force MIT-pthreads to be used by running configure with the --with-mit-threads option:

    shell> ./configure --with-mit-threads
    

    Building in a non-source directory is not supported when using MIT-pthreads because we want to minimize our changes to this code.

  • The checks that determine whether to use MIT-pthreads occur only during the part of the configuration process that deals with the server code. If you have configured the distribution using --without-server to build only the client code, clients do not know whether MIT-pthreads is being used and use Unix socket connections by default. Because Unix socket files do not work under MIT-pthreads on some platforms, this means you need to use -h or --host when you run client programs.

  • When MySQL is compiled using MIT-pthreads, system locking is disabled by default for performance reasons. You can tell the server to use system locking with the --external-locking option. This is needed only if you want to be able to run two MySQL servers against the same data files, which is not recommended.

  • Sometimes the pthread bind() command fails to bind to a socket without any error message (at least on Solaris). The result is that all connections to the server fail. For example:

    shell> mysqladmin version
    mysqladmin: connect to server at '' failed;
    error: 'Can't connect to mysql server on localhost (146)'
    

    The solution to this is to kill the mysqld server and restart it. This has happened to us only when we have forcibly stopped the server and restarted it immediately.

  • With MIT-pthreads, the sleep() system call isn't interruptible with SIGINT (break). This is only noticeable when you run mysqladmin --sleep. You must wait for the sleep() call to terminate before the interrupt is served and the process stops.

  • When linking, you may receive warning messages like these (at least on Solaris); they can be ignored:

    ld: warning: symbol `_iob' has differing sizes:
        (file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;
    file /usr/lib/libc.so value=0x140);
        /my/local/pthreads/lib/libpthread.a(findfp.o) definition taken
    ld: warning: symbol `__iob' has differing sizes:
        (file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;
    file /usr/lib/libc.so value=0x140);
        /my/local/pthreads/lib/libpthread.a(findfp.o) definition taken
    
  • Some other warnings also can be ignored:

    implicit declaration of function `int strtoll(...)'
    implicit declaration of function `int strtoul(...)'
    
  • We have not been able to make readline work with MIT-pthreads. (This is not necessary, but may be of interest to some.)

2.8.6. Installing MySQL from Source on Windows

These instructions describe how to build MySQL binaries from source for version 5.1 on Windows. Instructions are provided for building binaries from a standard source distribution or from the BitKeeper tree that contains the latest development source.

Note: The instructions in this document are strictly for users who want to test MySQL on Windows from the latest source distribution or from the BitKeeper tree. For production use, MySQL AB does not advise using a MySQL server built by yourself from source. Normally, it is best to use precompiled binary distributions of MySQL that are built specifically for optimal performance on Windows by MySQL AB. Instructions for installing a binary distributions are available in Section 2.3, “Installing MySQL on Windows”.

To build MySQL on Windows from source, you need the following compiler and resources available on your Windows system:

  • Visual Studio 2003 compiler system (VC++ 7.0).

  • Between 3 and 5 GB disk space.

  • Windows 2000 or higher.

The exact system requirements can be found here: http://msdn.microsoft.com/vstudio/productinfo/sysreqs/default.aspx

You also need a MySQL source distribution for Windows. There are two ways you can obtain a source distribution for MySQL 5.1:

  1. Obtain a source distribution packaged by MySQL AB. Prepackaged source distributions are available from http://dev.mysql.com/downloads/.

  2. You can package a source distribution yourself from the latest BitKeeper developer source tree. If you plan to do this, you must create the package on a Unix system and then transfer it to your Windows system. (The reason for this is that some of the configuration and build steps require tools that work only on Unix.) The BitKeeper approach thus requires:

If you are using a Windows source distribution, you can go directly to Section 2.8.6.1, “Building MySQL Using VC++”. To build from the BitKeeper tree, proceed to Section 2.8.6.2, “Creating a Windows Source Package from the Latest Development Source”.

If you find something not working as expected, or you have suggestions about ways to improve the current build process on Windows, please send a message to the win32 mailing list. See Section 1.7.1, “MySQL Mailing Lists”.

2.8.6.1. Building MySQL Using VC++

Note: VC++ workspace files for MySQL 4.1 and above are compatible with Microsoft Visual Studio 2003 editions and tested by MySQL AB staff before each release.

Follow this procedure to build MySQL:

  1. Create a work directory (for example, C:\workdir).

  2. Unpack the source distribution in the aforementioned directory using WinZip or another Windows tool that can read .zip files.

  3. Start Visual Studio.

  4. From the File menu, select Open Workspace.

  5. Open the mysql.dsw workspace you find in the work directory.

  6. From the Build menu, select the Set Active Configuration menu.

  7. Click over the screen selecting mysqld - Win32 Debug and click OK.

  8. Press F7 to begin the build of the debug server, libraries, and some client applications.

  9. Compile the release version in the same way.

  10. Debug versions of the programs and libraries are placed in the client_debug and lib_debug directories. Release versions of the programs and libraries are placed in the client_release and lib_release directories. Note that if you want to build both debug and release versions, you can select the Build All option from the Build menu.

  11. Test the server. The server built using the preceding instructions expects that the MySQL base directory and data directory are C:\mysql and C:\mysql\data by default. If you want to test your server using the source tree root directory and its data directory as the base directory and data directory, you need to tell the server their pathnames. You can either do this on the command line with the --basedir and --datadir options, or place appropriate options in an option file (the my.ini file in your Windows directory or C:\my.cnf). If you have an existing data directory elsewhere that you want to use, you can specify its pathname instead.

  12. Start your server from the client_release or client_debug directory, depending on which server you want to use. The general server startup instructions are at Section 2.3, “Installing MySQL on Windows”. You need to adapt the instructions appropriately if you want to use a different base directory or data directory.

  13. When the server is running in standalone fashion or as a service based on your configuration, try to connect to it from the mysql interactive command-line utility that exists in your client_release or client_debug directory.

When you are satisfied that the programs you have built are working correctly, stop the server. Then install MySQL as follows:

  1. Create the directories where you want to install MySQL. For example, to install into C:\mysql, use these commands:

    C:\> mkdir C:\mysql
    C:\> mkdir C:\mysql\bin
    C:\> mkdir C:\mysql\data
    C:\> mkdir C:\mysql\share
    C:\> mkdir C:\mysql\scripts
    

    If you want to compile other clients and link them to MySQL, you should also create several additional directories:

    C:\> mkdir C:\mysql\include
    C:\> mkdir C:\mysql\lib
    C:\> mkdir C:\mysql\lib\debug
    C:\> mkdir C:\mysql\lib\opt
    

    If you want to benchmark MySQL, create this directory:

    C:\> mkdir C:\mysql\sql-bench
    

    Benchmarking requires Perl support. See Section 2.13, “Perl Installation Notes”.

  2. From the workdir directory, copy into the C:\mysql directory the following directories:

    C:\> cd \workdir
    C:\workdir> copy client_release\*.exe C:\mysql\bin
    C:\workdir> copy client_debug\mysqld.exe C:\mysql\bin\mysqld-debug.exe
    C:\workdir> xcopy scripts\*.* C:\mysql\scripts /E
    C:\workdir> xcopy share\*.* C:\mysql\share /E
    

    If you want to compile other clients and link them to MySQL, you should also copy several libraries and header files:

    C:\workdir> copy lib_debug\mysqlclient.lib C:\mysql\lib\debug
    C:\workdir> copy lib_debug\libmysql.* C:\mysql\lib\debug
    C:\workdir> copy lib_debug\zlib.* C:\mysql\lib\debug
    C:\workdir> copy lib_release\mysqlclient.lib C:\mysql\lib\opt
    C:\workdir> copy lib_release\libmysql.* C:\mysql\lib\opt
    C:\workdir> copy lib_release\zlib.* C:\mysql\lib\opt
    C:\workdir> copy include\*.h C:\mysql\include
    C:\workdir> copy libmysql\libmysql.def C:\mysql\include
    

    If you want to benchmark MySQL, you should also do this:

    C:\workdir> xcopy sql-bench\*.* C:\mysql\bench /E
    

Set up and start the server in the same way as for the binary Windows distribution. See Section 2.3, “Installing MySQL on Windows”.

2.8.6.2. Creating a Windows Source Package from the Latest Development Source

To create a Windows source package from the current BitKeeper source tree, use the following instructions. Please note that this procedure must be performed on a system running a Unix or Unix-like operating system. For example, the procedure is known to work well on Linux.

  1. Copy the BitKeeper source tree for MySQL 5.1. For more information on how to copy the source tree, see the instructions in Section 2.8.3, “Installing from the Development Source Tree”.

  2. Configure and build the distribution so that you have a server binary to work with. One way to do this is to run the following command in the top-level directory of your source tree:

    shell> ./BUILD/compile-pentium-max
    
  3. After making sure that the build process completed successfully, run the following utility script from top-level directory of your source tree:

    shell> ./scripts/make_win_src_distribution
    

    This script creates a Windows source package to be used on your Windows system. You can supply different options to the script based on your needs. It accepts the following options:

    • --help

      Display a help message.

    • --debug

      Print information about script operations, do not create package.

    • --tmp

      Specify the temporary location.

    • --suffix

      Suffix name for the package.

    • --dirname

      Directory name to copy files (intermediate).

    • --silent

      Do not print verbose list of files processed.

    • --tar

      Create tar.gz package instead of .zip package.

    By default, make_win_src_distribution creates a Zip-format archive with the name mysql-VERSION-win-src.zip, where VERSION represents the version of your MySQL source tree.

  4. Copy or upload to your Windows machine the Windows source package that you have just created. To compile it, use the instructions in Section 2.8.6.1, “Building MySQL Using VC++”.

2.8.7. Compiling MySQL Clients on Windows

In your source files, you should include my_global.h before mysql.h:

#include <my_global.h>
#include <mysql.h>

my_global.h includes any other files needed for Windows compatibility (such as windows.h) if you compile your program on Windows.

You can either link your code with the dynamic libmysql.lib library, which is just a wrapper to load in libmysql.dll on demand, or link with the static mysqlclient.lib library.

The MySQL client libraries are compiled as threaded libraries, so you should also compile your code to be multi-threaded.

2.9. Post-Installation Setup and Testing

After installing MySQL, there are some issues you should address. For example, on Unix, you should initialize the data directory and create the MySQL grant tables. On all platforms, an important security concern is that the initial accounts in the grant tables have no passwords. You should assign passwords to prevent unauthorized access to the MySQL server. You can create time zone tables to enable recognition of named time zones. (Currently, these tables can be populated only on Unix. This problem will be addressed soon for Windows.)

The following sections include post-installation procedures that are specific to Windows systems and to Unix systems. Another section, Section 2.9.2.3, “Starting and Troubleshooting the MySQL Server”, applies to all platforms; it describes what to do if you have trouble getting the server to start. Section 2.9.3, “Securing the Initial MySQL Accounts”, also applies to all platforms. You should follow its instructions to make sure that you have properly protected your MySQL accounts by assigning passwords to them.

When you are ready to create additional user accounts, you can find information on the MySQL access control system and account management in Section 5.7, “The MySQL Access Privilege System”, and Section 5.8, “MySQL User Account Management”.

2.9.1. Windows Post-Installation Procedures

On Windows, the data directory and the grant tables do not have to be created. MySQL Windows distributions include the grant tables with a set of preinitialized accounts in the mysql database under the data directory. You do not run the mysql_install_db script that is used on Unix. However, if you did not install MySQL using the Windows Installation Wizard, you should assign passwords to the accounts. See Section 2.3.4.1, “Introduction to the Installation Wizard”. The procedure for this is given in Section 2.9.3, “Securing the Initial MySQL Accounts”.

Before setting up passwords, you might want to try running some client programs to make sure that you can connect to the server and that it is operating properly. Make sure the server is running (see Section 2.3.10, “Starting the Server for the First Time”), and then issue the following commands to verify that you can retrieve information from the server. The output should be similar to what is shown here:

C:\> C:\mysql\bin\mysqlshow
+-----------+
| Databases |
+-----------+
| mysql     |
| test      |
+-----------+

C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql
+--------------+
|    Tables    |
+--------------+
| columns_priv |
| db           |
| func         |
| host         |
| tables_priv  |
| user         |
+--------------+

C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db    | user |
+------+-------+------+
| %    | test% |      |
+------+-------+------+

If you are running a version of Windows that supports services and you want the MySQL server to run automatically when Windows starts, see Section 2.3.12, “Starting MySQL as a Windows Service”.

2.9.2. Unix Post-Installation Procedures

After installing MySQL on Unix, you need to initialize the grant tables, start the server, and make sure that the server works okay. You may also wish to arrange for the server to be started and stopped automatically when your system starts and stops. You should also assign passwords to the accounts in the grant tables.

On Unix, the grant tables are set up by the mysql_install_db program. For some installation methods, this program is run for you automatically:

  • If you install MySQL on Linux using RPM distributions, the server RPM runs mysql_install_db.

  • If you install MySQL on Mac OS X using a PKG distribution, the installer runs mysql_install_db.

Otherwise, you'll need to run mysql_install_db yourself.

The following procedure describes how to initialize the grant tables (if that has not previously been done) and then start the server. It also suggests some commands that you can use to test whether the server is accessible and working properly. For information about starting and stopping the server automatically, see Section 2.9.2.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to the accounts created by mysql_install_db. Instructions for doing so are given in Section 2.9.3, “Securing the Initial MySQL Accounts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This assumes that such an account exists. Either create the account if it does not exist, or substitute the name of a different existing login account that you plan to use for running the server.

  1. Change location into the top-level directory of your MySQL installation, represented here by BASEDIR:

    shell> cd BASEDIR
    

    BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The following steps assume that you are located in this directory.

  2. If necessary, run the mysql_install_db program to set up the initial MySQL grant tables containing the privileges that determine how users are allowed to connect to the server. You'll need to do this if you used a distribution type that doesn't run the program for you.

    Typically, mysql_install_db needs to be run only the first time you install MySQL, so you can skip this step if you are upgrading an existing installation, However, mysql_install_db does not overwrite any existing privilege tables, so it should be safe to run in any circumstances.

    To initialize the grant tables, use one of the following commands, depending on whether mysql_install_db is located in the bin or scripts directory:

    shell> bin/mysql_install_db --user=mysql
    shell> scripts/mysql_install_db --user=mysql
    

    The mysql_install_db script creates the data directory, the mysql database that holds all database privileges, and the test database that you can use to test MySQL. The script also creates privilege table entries for root accounts and anonymous-user accounts. The accounts have no passwords initially. A description of their initial privileges is given in Section 2.9.3, “Securing the Initial MySQL Accounts”. Briefly, these privileges allow the MySQL root user to do anything, and allow anybody to create or use databases with a name of test or starting with test_.

    It is important to make sure that the database directories and files are owned by the mysql login account so that the server has read and write access to them when you run it later. To ensure this, the --user option should be used as shown if you run mysql_install_db as root. Otherwise, you should execute the script while logged in as mysql, in which case you can omit the --user option from the command.

    mysql_install_db creates several tables in the mysql database, including user, db, host, tables_priv, columns_priv, and func, as well as others. See Section 5.7, “The MySQL Access Privilege System”, for a complete listing and description of these.

    If you don't want to have the test database, you can remove it with mysqladmin -u root drop test after starting the server.

    If you have problems with mysql_install_db, see Section 2.9.2.1, “Problems Running mysql_install_db.

  3. Start the MySQL server:

    shell> bin/mysqld_safe --user=mysql &
    

    It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure this, the --user option should be used as shown if you run mysql_safe as system root. Otherwise, you should execute the script while logged in to the system as mysql, in which case you can omit the --user option from the command.

    Further instructions for running MySQL as an unprivileged user are given in Section A.3.2, “How to Run MySQL as a Normal User”.

    If you neglected to create the grant tables before proceeding to this step, the following message appears in the error log file when you start the server:

    mysqld: Can't find file: 'host.frm'
    

    If you have other problems starting the server, see Section 2.9.2.3, “Starting and Troubleshooting the MySQL Server”.

  4. Use mysqladmin to verify that the server is running. The following commands provide simple tests to check whether the server is up and responding to connections:

    shell> bin/mysqladmin version
    shell> bin/mysqladmin variables
    

    The output from mysqladmin version varies slightly depending on your platform and version of MySQL, but should be similar to that shown here:

    shell> bin/mysqladmin version
    mysqladmin  Ver 8.41 Distrib 5.1.5-alpha, for pc-linux-gnu on i686
    Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
    This software comes with ABSOLUTELY NO WARRANTY. This is free software,
    and you are welcome to modify and redistribute it under the GPL license
    
    Server version          5.1.5-alpha-Max
    Protocol version        10
    Connection              Localhost via UNIX socket
    UNIX socket             /var/lib/mysql/mysql.sock
    Uptime:                 14 days 5 hours 5 min 21 sec
    
    Threads: 1  Questions: 366  Slow queries: 0  
    Opens: 0  Flush tables: 1  Open tables: 19  
    Queries per second avg: 0.000
    

    To see what else you can do with mysqladmin, invoke it with the --help option.

  5. Verify that you can shut down the server:

    shell> bin/mysqladmin -u root shutdown
    
  6. Verify that you can restart the server. Do this by using mysqld_safe or by invoking mysqld directly. For example:

    shell> bin/mysqld_safe --user=mysql --log &
    

    If mysqld_safe fails, see Section 2.9.2.3, “Starting and Troubleshooting the MySQL Server”.

  7. Run some simple tests to verify that you can retrieve information from the server. The output should be similar to what is shown here:

    shell> bin/mysqlshow
    +-----------+
    | Databases |
    +-----------+
    | mysql     |
    | test      |
    +-----------+
    
    shell> bin/mysqlshow mysql
    Database: mysql
    +---------------------------+
    |          Tables           |
    +---------------------------+
    | columns_priv              |
    | db                        |
    | func                      |
    | help_category             |
    | help_keyword              |
    | help_relation             |
    | help_topic                |
    | host                      |
    | proc                      |
    | procs_priv                |
    | tables_priv               |
    | time_zone                 |
    | time_zone_leap_second     |
    | time_zone_name            |
    | time_zone_transition      |
    | time_zone_transition_type |
    | user                      |
    +---------------------------+
    
    shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql
    +------+--------+------+
    | host | db     | user |
    +------+--------+------+
    | %    | test   |      |
    | %    | test_% |      |
    +------+--------+------+
    
  8. There is a benchmark suite in the sql-bench directory (under the MySQL installation directory) that you can use to compare how MySQL performs on different platforms. The benchmark suite is written in Perl. It uses the Perl DBI module to provide a database-independent interface to the various databases, and some other additional Perl modules are required to run the benchmark suite. You must have the following modules installed:

    DBI
    DBD::mysql
    Data::Dumper
    Data::ShowTable
    

    These modules can be obtained from CPAN (http://www.cpan.org/). See also Section 2.13.1, “Installing Perl on Unix”.

    The sql-bench/Results directory contains the results from many runs against different databases and platforms. To run all tests, execute these commands:

    shell> cd sql-bench
    shell> perl run-all-tests
    

    If you don't have the sql-bench directory, you probably installed MySQL using RPM files other than the source RPM. (The source RPM includes the sql-bench benchmark directory.) In this case, you must first install the benchmark suite before you can use it. There are separate benchmark RPM files named mysql-bench-VERSION-i386.rpm that contain benchmark code and data.

    If you have a source distribution, there are also tests in its tests subdirectory that you can run. For example, to run auto_increment.tst, execute this command from the top-level directory of your source distribution:

    shell> mysql -vvf test < ./tests/auto_increment.tst
    

    The expected result of the test can be found in the ./tests/auto_increment.res file.

  9. At this point, you should have the server running. However, none of the initial MySQL accounts have a password, so you should assign passwords using the instructions found in Section 2.9.3, “Securing the Initial MySQL Accounts”.

The MySQL 5.1 installation procedure creates time zone tables in the mysql database. However, you must populate the tables manually. Instructions for doing this are given in Section 5.10.8, “MySQL Server Time Zone Support”.

2.9.2.1. Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not overwrite existing MySQL privilege tables, and it does not affect any other data.

If you want to re-create your privilege tables, first stop the mysqld server if it's running. Then rename the mysql directory under the data directory to save it, and then run mysql_install_db. For example:

shell> mv mysql-data-directory/mysql mysql-data-directory/mysql-old
shell> mysql_install_db --user=mysql

This section lists problems you might encounter when you run mysql_install_db:

  • mysql_install_db fails to install the grant tables

    You may find that mysql_install_db fails to install the grant tables and terminates after displaying the following messages:

    Starting mysqld daemon with databases from XXXXXX
    mysqld ended
    

    In this case, you should examine the error log file very carefully. The log should be located in the directory XXXXXX named by the error message, and should indicate why mysqld didn't start. If you do not understand what happened, include the log when you post a bug report. See Section 1.8, “How to Report Bugs or Problems”.

  • There is a mysqld process running

    This indicates that the server is running, in which case the grant tables have probably been created. If so, there is no need to run mysql_install_db at all because it needs to be run only once (when you install MySQL the first time).

  • Installing a second mysqld server does not work when one server is running

    This can happen when you have an existing MySQL installation, but want to put a new installation in a different location. For example, you might have a production installation, but you want to create a second installation for testing purposes. Generally the problem that occurs when you try to run a second server is that it tries to use a network interface that is in use by the first server. In this case, you should see one of the following error messages:

    Can't start server: Bind on TCP/IP port:
    Address already in use
    Can't start server: Bind on unix socket...
    

    For instructions on setting up multiple servers, see Section 5.12, “Running Multiple MySQL Servers on the Same Machine”.

  • You do not have write access to /tmp

    If you do not have write access to create temporary files or a Unix socket file in the default location (the /tmp directory), an error occurs when you run mysql_install_db or the mysqld server.

    You can specify different temporary directory and Unix socket file locations by executing these commands prior to starting mysql_install_db or mysqld:

    shell> TMPDIR=/some_tmp_dir/
    shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
    shell> export TMPDIR MYSQL_UNIX_PORT
    

    some_tmp_dir should be the full pathname to some directory for which you have write permission.

    After this, you should be able to run mysql_install_db and start the server with these commands:

    shell> bin/mysql_install_db --user=mysql
    shell> bin/mysqld_safe --user=mysql &
    

    If mysql_install_db is located in the scripts directory, modify the first command to scripts/mysql_install_db.

    See Section A.4.5, “How to Protect or Change the MySQL Socket File /tmp/mysql.sock, and Appendix F, Environment Variables.

There are some alternatives to running the mysql_install_db script as it is provided in the MySQL distribution:

  • If you want the initial privileges to be different from the standard defaults, you can modify mysql_install_db before you run it. However, it is preferable to use GRANT and REVOKE to change the privileges after the grant tables have been set up. In other words, you can run mysql_install_db, and then use mysql -u root mysql to connect to the server as the MySQL root user so that you can issue the necessary GRANT and REVOKE statements.

    If you want to install MySQL on several machines with the same privileges, you can put the GRANT and REVOKE statements in a file and execute the file as a script using mysql after running mysql_install_db. For example:

    shell> bin/mysql_install_db --user=mysql
    shell> bin/mysql -u root < your_script_file
    

    By doing this, you can avoid having to issue the statements manually on each machine.

  • It is possible to re-create the grant tables completely after they have previously been created. You might want to do this if you're just learning how to use GRANT and REVOKE and have made so many modifications after running mysql_install_db that you want to wipe out the tables and start over.

    To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the directory containing the mysql database. (This is the directory named mysql under the data directory, which is listed as the datadir value when you run mysqld --help.) Then run the mysql_install_db script again.

  • You can start mysqld manually using the --skip-grant-tables option and add the privilege information yourself using mysql:

    shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
    shell> bin/mysql mysql
    

    From mysql, manually execute the SQL commands contained in mysql_install_db. Make sure that you run mysqladmin flush-privileges or mysqladmin reload afterward to tell the server to reload the grant tables.

    Note that by not using mysql_install_db, you not only have to populate the grant tables manually, you also have to create them first.

2.9.2.2. Starting and Stopping MySQL Automatically

Generally, you start the mysqld server in one of these ways:

  • By invoking mysqld directly. This works on any platform.

  • By running the MySQL server as a Windows service. This can be done on versions of Windows that support services (such as NT, 2000, XP, and 2003). The service can be set to start the server automatically when Windows starts, or as a manual service that you start on request. For instructions, see Section 2.3.12, “Starting MySQL as a Windows Service”.

  • By invoking mysqld_safe, which tries to determine the proper options for mysqld and then runs it with those options. This script is used on systems based on BSD Unix. See Section 5.1.3, “mysqld_safe — MySQL Server Startup Script”.

  • By invoking mysql.server. This script is used primarily at system startup and shutdown on systems that use System V-style run directories, where it usually is installed under the name mysql. The mysql.server script starts the server by invoking mysqld_safe. See Section 5.1.4, “mysql.server — MySQL Server Startup Script”.

  • On Mac OS X, you can install a separate MySQL Startup Item package to enable the automatic startup of MySQL on system startup. The Startup Item starts the server by invoking mysql.server. See Section 2.5, “Installing MySQL on Mac OS X”, for details.

The mysql.server and mysqld_safe scripts and the Mac OS X Startup Item can be used to start the server manually, or automatically at system startup time. mysql.server and the Startup Item also can be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start or stop arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and then invokes mysqld_safe. If you want the server to run as some specific user, add an appropriate user option to the [mysqld] group of the /etc/my.cnf option file, as shown later in this section. (It is possible that you will need to edit mysql.server if you've installed a binary distribution of MySQL in a non-standard location. Modify it to cd into the proper directory before it runs mysqld_safe. If you do this, your modified version of mysql.server may be overwritten if you upgrade MySQL in the future, so you should make a copy of your edited version that you can reinstall.)

mysql.server stop brings down the server by sending a signal to it. You can also stop the server manually by executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop commands to the appropriate places in your /etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server script is installed in the /etc/init.d directory with the name mysql. You need not install it manually. See Section 2.4, “Installing MySQL on Linux”, for more information on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install mysql.server automatically, you can install it manually. The script can be found in the support-files directory under the MySQL installation directory or in a MySQL source tree.

To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql, and then make it executable. Do this by changing location into the appropriate directory where mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/init.d. Adjust the preceding commands accordingly. Alternatively, first create /etc/init.d as a symbolic link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your operating system. On Linux, you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual page states that scripts in this directory are executed only if their basename matches the *.sh shell filename pattern. Any other files or directories present within the directory are silently ignored. In other words, on FreeBSD, you should install the mysql.server script as /usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/init.d/boot.local to start additional services on startup. To start up MySQL using this method, you could append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script understands the following options: basedir, datadir, and pid-file. If specified, they must be placed in an option file, not on the command line. mysql.server understands only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from option files:

ScriptOption Groups
mysqld[mysqld], [server], [mysqld-major-version]
mysql.server[mysqld], [mysql.server], [server]
mysqld_safe[mysqld], [server], [mysqld_safe]

[mysqld-major-version] means that groups with names like [mysqld-5.0] and [mysqld-5.1] are read by servers having versions 5.0.x, 5.1.x, and so forth. This feature can be used to specify options that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe also reads the [safe_mysqld] group. However, you should update your option files to use the [mysql.server] and [mysqld_safe] groups instead when using MySQL 5.1.

See Section 4.3.2, “Using Option Files”.

2.9.2.3. Starting and Troubleshooting the MySQL Server

If you have problems starting the server, here are some things you can try:

  • Specify any special options needed by the storage engines you are using.

  • Make sure that the server knows where to find the data directory.

  • Make sure the server can use the data directory. The ownership and permissions of the data directory and its contents must be set such that the server can access and modify them.

  • Check the error log to see why the server does not start.

  • Verify that the network interfaces the server wants to use are available.

Some storage engines have options that control their behavior. You can create a my.cnf file and set startup options for the engines you plan to use. If you are going to use storage engines that support transactional tables (InnoDB, BDB), be sure that you have them configured the way you want before starting the server:

When the mysqld server starts, it changes location to the data directory. This is where it expects to find databases and where it expects to write log files. On Unix, the server also writes the pid (process ID) file in the data directory.

The data directory location is hardwired in when the server is compiled. This is where the server looks for the data directory by default. If the data directory is located somewhere else on your system, the server does not work properly. You can find out what the default path settings are by invoking mysqld with the --verbose and --help options.

If the defaults don't match the MySQL installation layout on your system, you can override them by specifying options on the command line to mysqld or mysqld_safe. You can also list the options in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, normally you can tell mysqld the location of the base directory under which MySQL is installed and it looks for the data directory there. You can do this with the --basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the --verbose and --help options. For example, if you change location into the directory where mysqld is installed, and then run the following command, it shows the effect of starting the server with a base directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but note that --verbose and --help must be the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that the access privileges of the data directory or its contents do not allow the server access. In this case, you change the permissions for the involved files and directories so that the server has the right to use them. You can also start the server as root, but this can raise security issues and should be avoided.

On Unix, change location into the data directory and check the ownership of the data directory and its contents to make sure the server has access. For example, if the data directory is /usr/local/mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the account that you use for running the server, change their ownership to that account:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

If the server fails to start up correctly, check the error log file to see whether you can find out why. Log files are located in the data directory (typically C:\Program Files\MySQL\MySQL Server 5.1\data on Windows, /usr/local/mysql/data for a Unix binary distribution, and /usr/local/var for a Unix source distribution). Look in the data directory for files with names of the form host_name.err and host_name.log, where host_name is the name of your server host. Then examine the last few lines of these files. On Unix, you can use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

The error log contains information that indicates why the server couldn't start. For example, you might see something like this in the log:

000729 14:50:10  bdb:  Recovery function for LSN 1 27595 failed
000729 14:50:10  bdb:  warning: ./test/t1.db: No such file or directory
000729 14:50:10  Can't init databases

This means that you did not start mysqld with the --bdb-no-recover option and Berkeley DB found something wrong with its own log files when it tried to recover your databases. To be able to continue, you should move the old Berkeley DB log files from the database directory to some other place, where you can later examine them. The BDB log files are named in sequence beginning with log.0000000001, where the number increases over time.

If you are running mysqld with BDB table support and mysqld dumps core at startup, this could be due to problems with the BDB recovery log. In this case, you can try starting mysqld with --bdb-no-recover. If that helps, you should remove all BDB log files from the data directory and try starting mysqld again without the --bdb-no-recover option.

If either of the following errors occur, it means that some other program (perhaps another mysqld server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server before starting mysqld again. (If another server is running, and you really want to run multiple servers, you can find information about how to do so in Section 5.12, “Running Multiple MySQL Servers on the Same Machine”.)

If no other server is running, try to execute the command telnet your-host-name tcp-ip-port-number. (The default MySQL port number is 3306.) Then press Enter a couple of times. If you don't get an error message like telnet: Unable to connect to remote host: Connection refused, some other program is using the TCP/IP port that mysqld is trying to use. You'll need to track down what program this is and disable it, or else tell mysqld to listen to a different port with the --port option. In this case, you'll also need to specify the port number for client programs when connecting to the server via TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections to it. If so, modify the firewall settings to allow access to the port.

If the server starts but you can't connect to it, you should make sure that you have an entry in /etc/hosts that looks like this:

127.0.0.1       localhost

This problem occurs only on systems that do not have a working thread library and for which MySQL must be configured to use MIT-pthreads.

If you cannot get mysqld to start, you can try to make a trace file to find the problem by using the --debug option. See Section E.1.2, “Creating Trace Files”.

See Section 2.3.14, “Troubleshooting a MySQL Installation Under Windows”, for more information on troubleshooting Windows installations.

2.9.3. Securing the Initial MySQL Accounts

Part of the MySQL installation process is to set up the mysql database containing the grant tables:

  • Windows distributions contain preinitialized grant tables that are installed automatically.

  • On Unix, the grant tables are populated by the mysql_install_db program. Some installation methods run this program for you. Others require that you execute it manually. For details, see Section 2.9.2, “Unix Post-Installation Procedures”.

The grant tables define the initial MySQL user accounts and their access privileges. These accounts are set up as follows:

  • Accounts with the username root are created. These are superuser accounts that can do anything. The initial root account passwords are empty, so anyone can connect to the MySQL server as rootwithout a password — and be granted all privileges.

    • On Windows, one root account is created; this account allows connecting from the local host only.

    • On Unix, both root accounts are for connections from the local host. Connections must be made from the local host by specifying a hostname of localhost for one account, or the actual hostname or IP number for the other.

  • Two anonymous-user accounts are created, each with an empty username. The anonymous accounts have no passwords, so anyone can use them to connect to the MySQL server.

    • On Windows, one anonymous account is for connections from the local host. It has all privileges, just like the root accounts. The other is for connections from any host and has all privileges for the test database or other databases with names that start with test.

    • On Unix, both anonymous accounts are for connections from the local host. Connections must be made from the local host by specifying a hostname of localhost for one account, or the actual hostname or IP number for the other. These accounts have all privileges for the test database or other databases with names that start with test_.

As noted, none of the initial accounts have passwords. This means that your MySQL installation is unprotected until you do something about it:

  • If you want to prevent clients from connecting as anonymous users without a password, you should either assign passwords to the anonymous accounts or else remove them.

  • You should assign passwords to the MySQL root accounts.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for the anonymous accounts and then for the root accounts. Replace “newpwd” in the examples with the actual password that you want to use. The instructions also cover how to remove the anonymous accounts, should you prefer not to allow anonymous access at all.

You might want to defer setting the passwords until later, so that you don't need to specify them while you perform additional setup or testing. However, be sure to set them before using your installation for any real production work.

To assign passwords to the anonymous accounts, you can use either SET PASSWORD or UPDATE. In both cases, be sure to encrypt the password using the PASSWORD() function.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'%' = PASSWORD('newpwd');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This is the name that is specified in the Host column of the non-localhost record for root in the user table. If you don't know what hostname this is, issue the following statement before using SET PASSWORD:

mysql> SELECT Host, User FROM mysql.user;

Look for the record that has root in the User column and something other than localhost in the Host column. Then use that Host value in the second SET PASSWORD statement.

The other way to assign passwords to the anonymous accounts is by using UPDATE to modify the user table directly. Connect to the server as root and issue an UPDATE statement that assigns a value to the Password column of the appropriate user table records. The procedure is the same for Windows and Unix. The following UPDATE statement assigns a password to both anonymous accounts at once:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')
    ->     WHERE User = '';
mysql> FLUSH PRIVILEGES;

After you update the passwords in the user table directly using UPDATE, you must tell the server to re-read the grant tables with FLUSH PRIVILEGES. Otherwise, the change goes unnoticed until you restart the server.

If you prefer to remove the anonymous accounts instead, do so as follows:

shell> mysql -u root
mysql> DELETE FROM mysql.user WHERE User = '';
mysql> FLUSH PRIVILEGES;

The DELETE statement applies both to Windows and to Unix. On Windows, if you want to remove only the anonymous account that has the same privileges as root, do this instead:

shell> mysql -u root
mysql> DELETE FROM mysql.user WHERE Host='localhost' AND User='';
mysql> FLUSH PRIVILEGES;

This account allows anonymous access but has full privileges, so removing it improves security.

You can assign passwords to the root accounts in several ways. The following discussion demonstrates three methods:

  • Use the SET PASSWORD statement

  • Use the mysqladmin command-line client program

  • Use the UPDATE statement

To assign passwords using SET PASSWORD, connect to the server as root and issue two SET PASSWORD statements. Be sure to encrypt the password using the PASSWORD() function.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');

For Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This is the same hostname that you used when you assigned the anonymous account passwords.

To assign passwords to the root accounts using mysqladmin, execute the following commands:

  shell> mysqladmin -u root password "newpwd"
  shell> mysqladmin -u root -h host_name password "newpwd"

These commands apply both to Windows and to Unix. In the second command, replace host_name with the name of the server host. The double quotes around the password are not always necessary, but you should use them if the password contains spaces or other characters that are special to your command interpreter.

You can also use UPDATE to modify the user table directly. The following UPDATE statement assigns a password to both root accounts at once:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')
    ->     WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The UPDATE statement applies both to Windows and to Unix.

After the passwords have been set, you must supply the appropriate password whenever you connect to the server. For example, if you want to use mysqladmin to shut down the server, you can do so using this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note: If you forget your root password after setting it up, the procedure for resetting it is covered in Section A.4.1, “How to Reset the Root Password”.

To set up new accounts, you can use the GRANT statement. For instructions, see Section 5.8.2, “Adding New User Accounts to MySQL”.

2.10. Upgrading MySQL

As a general rule, we recommend that when upgrading from one release series to another, you should go to the next series rather than skipping a series. For example, if you currently are running MySQL 3.23 and wish to upgrade to a newer series, upgrade to MySQL 4.0 rather than to 5.0 or 5.1.

The following items form a checklist of things you should do whenever you perform an upgrade:

  • Before upgrading from MySQL 5.0 to 5.1, read Section 2.10.1, “Upgrading from MySQL 5.0”, as well as Appendix D, MySQL Change History. These provide information about features that are new or different in MySQL 5.1 as opposed to those found in MySQL 5.0. If you wish to upgrade from a release series previous to MySQL 5.0, you should upgrade to each next release series in turn until you have reached MySQL 5.0, and then proceed with the upgrade to MySQL 5.1. For information on upgrading from MySQL 5.0, see the MySQL 5.0 Reference Manual; for ealrier releases, see the MySQL 4.1 Reference Manual.

  • Before you perform an upgrade, back up your databases.

  • If you are running MySQL Server on Windows, see Section 2.3.15, “Upgrading MySQL on Windows”.

  • An upgrade to MySQL 5.1 from 5.0 involves changes to the grant tables that are stored in the mysql database; columns and tables were added to support new features. To take advantage of these features, be sure that your grant tables are up to date. The procedure for upgrading the grant tables is described in Section 2.10.2, “Upgrading the Grant Tables”. You may want to use mysqldump to dump your tables before upgrading; after upgrading, you can reload the dump file using mysql or mysqlimport to re-create and repopulate your tables.

  • If you are using replication, see Section 6.7, “Upgrading a Replication Setup”, for information on upgrading your replication setup.

  • If you install a MySQL-Max distribution that includes a server named mysqld-max, and then upgrade later to a non-Max version of MySQL, mysqld_safe still attempts to run the old mysqld-max server. If you perform such an upgrade, you should remove the old mysqld-max server manually to ensure that mysqld_safe runs the new mysqld server.

You can always move the MySQL format files and data files between different versions on the same architecture as long as you stay within versions for the same release series of MySQL. The current production release series is 5.1. If you change the character set when running MySQL, you must run myisamchk -r -q --set-character-set=charset on all MyISAM tables. Otherwise, your indexes may not be ordered correctly, because changing the character set may also change the sort order.

If you are cautious about using new versions, you can always rename your old mysqld before installing a newer one. For example, if you are using MySQL 5.0.13 and want to upgrade to 5.1.10, rename your current server from mysqld to mysqld-5.0.13. If your new mysqld then does something unexpected, you can simply shut it down and restart with your old mysqld.

If, after an upgrade, you experience problems with recompiled client programs, such as Commands out of sync or unexpected core dumps, you probably have used old header or library files when compiling your programs. In this case, you should check the date for your mysql.h file and libmysqlclient.a library to verify that they are from the new MySQL distribution. If not, recompile your programs with the new headers and libraries.

If problems occur, such as that the new mysqld server does not start or that you cannot connect without a password, verify that you do not have an old my.cnf file from your previous installation. You can check this with the --print-defaults option (for example, mysqld --print-defaults). If this displays anything other than the program name, you have an active my.cnf file that affects server or client operation.

It is a good idea to rebuild and reinstall the Perl DBD::mysql module whenever you install a new release of MySQL. The same applies to other MySQL interfaces as well, such as the PHP mysql extension and the Python MySQLdb module.

2.10.1. Upgrading from MySQL 5.0

When upgrading a 5.0 installation to 5.0.10 or above note that it is necessary to run mysql_fix_privilege_tables (or the mysql_fix_privilege_tables.sql script on Windows). Otherwise, creating stored procedures might not work. The procedure for doing this is described in Section 2.10.2, “Upgrading the Grant Tables”.

Note: It is good practice to back up your data before installing any new version of software. Although MySQL worked very hard to ensure a high level of quality, you should protect your data by making a backup. MySQL generally recommends that you dump and reload your tables from any previous version to upgrade to 5.1.

In general, you should do the following when upgrading to MySQL 5.1 from 5.0:

The following list describes changes that may affect applications and that you should watch out for when upgrading to version 5.1.

Server Changes:

  • Incompatible change: MySQL 5.1 implements support for a plugin API that allows the loading and unloading of components at runtime, without restarting the server. Section 27.2, “The MySQL Plugin Interface”. The plugin API requires the mysql.plugin table. When upgrading from an older version of MySQL, you should run the mysql_fix_privilege_tables command to create this table. See Section 2.10.2, “Upgrading the Grant Tables”.

    Plugins are installed in the directory named by the plugin_dir system variable. This variable also controls the location from which the server loads user-defined functions (UDFs), which is a change from earlier versions of MySQL. That is, all UDF library files now must be installed in the plugin directory. When upgrading from an older version of MySQL, you must migrate your UDF files to the plugin directory.

  • The table_cache system variable was renamed to table_open_cache. Any scripts that refer to table_cache should be updated to use the new name.

SQL Changes:

2.10.2. Upgrading the Grant Tables

Some releases introduce changes to the structure of the grant tables (the tables in the mysql database) to add new privileges or to support new features. To make sure that your grant tables are current when you update to a new version of MySQL, you should run the mysql_fix_privilege_tables script to update your grant tables as well. The procedure for doing this is described at Section 5.4, “mysql_fix_privilege_tables — Upgrade MySQL System Tables”.

If you are upgrading from MySQL 4.1 or earlier, the grant table upgrade procedure adds view-related columns for the CREATE VIEW and SHOW VIEW privileges. These privileges exist at the global and database levels. In such cases, the MySQL 5.1 version of mysql_fix_privilege_tables copies the Create_priv value in the user table to the Create_view_priv and Show_view_priv columns.

2.10.3. Copying MySQL Databases to Another Machine

You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different architectures that support the same floating-point format. (MySQL takes care of any byte-swapping issues.) See Section 15.1, “The MyISAM Storage Engine”.

In cases where you need to transfer databases between different architectures, you can use mysqldump to create a file containing SQL statements. You can then transfer the file to the other machine and feed it as input to the mysql client.

Use mysqldump --help to see what options are available. If you are moving the data to a newer version of MySQL, you should use mysqldump --opt to take advantage of any optimizations that result in a dump file that is smaller and can be processed more quickly.

The easiest (although not the fastest) way to move a database between two machines is to run the following commands on the machine on which the database is located:

shell> mysqladmin -h 'other_hostname' create db_name
shell> mysqldump --opt db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these commands:

shell> mysqladmin create db_name
shell> mysqldump -h 'other_hostname' --opt --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file into the database there. For example, you can dump a database to a compressed file on the source machine like this:

shell> mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands there:

shell> mysqladmin create db_name
shell> gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is much faster than simply using mysqldump. In the following commands, DUMPDIR represents the full pathname of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine and load the files into MySQL there:

shell> mysqladmin create db_name           # create database
shell> cat DUMPDIR/*.sql | mysql db_name   # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt   # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You might have to run commands as the MySQL root user on the new machine until you have the mysql database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-privileges so that the server reloads the grant table information.

2.11. Downgrading MySQL

This section describes what you should do to downgrade to an older MySQL version in the unlikely case that the previous version worked better than the new one.

If you are downgrading within the same release series (for example, from 5.0.13 to 5.0.12) the general rule is that you just have to install the new binaries on top of the old ones. There is no need to do anything with the databases. As always, however, it is always a good idea to make a backup.

The following items form a checklist of things you should do whenever you perform a downgrade:

  • Read the upgrading section for the release series from which you are downgrading to be sure that it does not have any features you really need. Section 2.10, “Upgrading MySQL”.

  • If there is a downgrading section for that version, you should read that as well.

In most cases, you can move the MySQL format files and data files between different versions on the same architecture as long as you stay within versions for the same release series of MySQL.

If you downgrade from one release series to another, there may be incompatibilities in table storage formats. In this case, you can use mysqldump to dump your tables before downgrading. After downgrading, reload the dump file using mysql or mysqlimport to re-create your tables. For examples, see Section 2.10.3, “Copying MySQL Databases to Another Machine”.

The normal symptom of a downward-incompatible table format change when you downgrade is that you can't open tables. In that case, use the following procedure:

  1. Stop the older MySQL server that you are downgrading to.

  2. Restart the newer MySQL server you are downgrading from.

  3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump file.

  4. Stop the newer MySQL server and restart the older one.

  5. Reload the dump file into the older server. Your tables should be accessible.

2.12. Operating System-Specific Notes

2.12.1. Linux Notes

This section discusses issues that have been found to occur on Linux. The first few subsections describe general operating system-related issues, problems that can occur when using binary or source distributions, and post-installation issues. The remaining subsections discuss problems that occur with Linux on specific platforms.

Note that most of these problems occur on older versions of Linux. If you are running a recent version, you may see none of them.

2.12.1.1. Linux Operating System Notes

MySQL needs at least Linux version 2.0.

Warning: We have seen some strange problems with Linux 2.2.14 and MySQL on SMP systems. We also have reports from some MySQL users that they have encountered serious stability problems using MySQL with kernel 2.2.14. If you are using this kernel, you should upgrade to 2.2.19 (or newer) or to a 2.4 kernel. If you have a multiple-CPU box, you should seriously consider using 2.4 because it gives you a significant speed boost. Your system should be more stable.

When using LinuxThreads, you should see a minimum of three mysqld processes running. These are in fact threads. There is one thread for the LinuxThreads manager, one thread to handle connections, and one thread to handle alarms and signals.

2.12.1.2. Linux Binary Distribution Notes

The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible speed. We are always trying to use the fastest stable compiler available.

The binary release is linked with -static, which means you do not normally need to worry about which version of the system libraries you have. You need not install LinuxThreads, either. A program linked with -static is slightly larger than a dynamically linked program, but also slightly faster (3-5%). However, one problem with a statically linked program is that you can't use user-defined functions (UDFs). If you are going to write or use UDFs (this is something for C or C++ programmers only), you must compile MySQL yourself using dynamic linking.

A known issue with binary distributions is that on older Linux systems that use libc (such as Red Hat 4.x or Slackware), you get some (non-fatal) issues with hostname resolution. If your system uses libc rather than glibc2, you probably will encounter some difficulties with hostname resolution and getpwnam(). This happens because glibc (unfortunately) depends on some external libraries to implement hostname resolution and getpwent(), even when compiled with -static. These problems manifest themselves in two ways:

  • You may see the following error message when you run mysql_install_db:

    Sorry, the host 'xxxx' could not be looked up
    

    You can deal with this by executing mysql_install_db --force, which does not execute the resolveip test in mysql_install_db. The downside is that you cannot use hostnames in the grant tables: except for localhost, you must use IP numbers instead. If you are using an old version of MySQL that does not support --force, you must manually remove the resolveip test in mysql_install using a text editor.

  • You also may see the following error when you try to run mysqld with the --user option:

    getpwnam: No such file or directory
    

    To work around this, start mysqld by using the su command rather than by specifying the --user option. This causes the system itself to change the user ID of the mysqld process so that mysqld need not do so.

Another solution, which solves both problems, is not to use a binary distribution. Obtain a MySQL source distribution (in RPM or tar.gz format) and install that instead.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable when clients make a great many new connections to a mysqld server over TCP/IP. The problem is that Linux has a delay between the time that you close a TCP/IP socket and the time that the system actually frees it. There is room for only a finite number of TCP/IP slots, so you encounter the resource-unavailable error if clients attempt too many new TCP/IP connections over a short period of time. For example, you may see the error when you run the MySQL test-connect benchmark over TCP/IP.

We have inquired about this problem a few times on different Linux mailing lists but have never been able to find a suitable resolution. The only known “fix” is for clients to use persistent connections, or, if you are running the database server and clients on the same machine, to use Unix socket file connections rather than TCP/IP connections.

2.12.1.3. Linux Source Distribution Notes

The following notes regarding glibc apply only to the situation when you build MySQL yourself. If you are running Linux on an x86 machine, in most cases it is much better for you to use our binary. We link our binaries against the best patched version of glibc we can find and with the best compiler options, in an attempt to make it suitable for a high-load server. For a typical user, even for setups with a lot of concurrent connections or tables exceeding the 2GB limit, our binary is the best choice in most cases. After reading the following text, if you are in doubt about what to do, try our binary first to see whether it meets your needs. If you discover that it is not good enough, you may want to try your own build. In that case, we would appreciate a note about it so that we can build a better binary next time.

MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn't have glibc2, you must install LinuxThreads before trying to compile MySQL. You can obtain LinuxThreads from http://dev.mysql.com/downloads/os-linux.html.

Note that glibc versions before and including version 2.1.1 have a fatal bug in pthread_mutex_timedwait() handling, which is used when INSERT DELAYED statements are issued. We recommend that you not use INSERT DELAYED before upgrading glibc.

Note that Linux kernel and the LinuxThread library can by default handle a maximum of 1,024 threads. If you plan to have more than 1,000 concurrent connections, you need to make some changes to LinuxThreads, as follows:

  • Increase PTHREAD_THREADS_MAX in sysdeps/unix/sysv/linux/bits/local_lim.h to 4096 and decrease STACK_SIZE in linuxthreads/internals.h to 256KB. The paths are relative to the root of glibc. (Note that MySQL is not stable with 600-1000 connections if STACK_SIZE is the default of 2MB.)

  • Recompile LinuxThreads to produce a new libpthread.a library, and relink MySQL against it.

Additional information about circumventing thread limits in LinuxThreads can be found at http://www.volano.com/linuxnotes.html.

There is another issue that greatly hurts MySQL performance, especially on SMP systems. The mutex implementation in LinuxThreads in glibc 2.1 is very poor for programs with many threads that hold the mutex only for a short time. This produces a paradoxical result: If you link MySQL against an unmodified LinuxThreads, removing processors from an SMP actually improves MySQL performance in many cases. We have made a patch available for glibc 2.1.3 to correct this behavior (http://www.mysql.com/Downloads/Linux/linuxthreads-2.1-patch).

With glibc 2.2.2, MySQL uses the adaptive mutex, which is much better than even the patched one in glibc 2.1.3. Be warned, however, that under some conditions, the current mutex code in glibc 2.2.2 overspins, which hurts MySQL performance. The likelihood that this condition occurs can be reduced by re-nicing the mysqld process to the highest priority. We have also been able to correct the overspin behavior with a patch, available at http://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It combines the correction of overspin, maximum number of threads, and stack spacing all in one. You need to apply it in the linuxthreads directory with patch -p0 </tmp/linuxthreads-2.2.2.patch. We hope it is included in some form in future releases of glibc 2.2. In any case, if you link against glibc 2.2.2, you still need to correct STACK_SIZE and PTHREAD_THREADS_MAX. We hope that the defaults is corrected to some more acceptable values for high-load MySQL setup in the future, so that the commands needed to produce your own build can be reduced to ./configure; make; make install.

We recommend that you use these patches to build a special static version of libpthread.a and use it only for statically linking against MySQL. We know that these patches are safe for MySQL and significantly improve its performance, but we cannot say anything about their effects on other applications. If you link other applications that require LinuxThreads against the patched static version of the library, or build a patched shared version and install it on your system, you do so at your own risk.

If you experience any strange problems during the installation of MySQL, or with some common utilities hanging, it is very likely that they are either library or compiler related. If this is the case, using our binary resolves them.

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

  • Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -Lpath).

  • Copy libmysqclient.so to /usr/lib.

  • Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable before running your client.

If you are using the Fujitsu compiler (fcc/FCC), you may have some problems compiling MySQL because the Linux header files are very gcc oriented. The following configure line should work with fcc/FCC:

CC=fcc CFLAGS="-O -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
    -DCONST=const -DNO_STRTOLL_PROTO" \
CXX=FCC CXXFLAGS="-O -K fast -K lib \
    -K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE \
    -DCONST=const -Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \
    '-D_EXTERN_INLINE=static __inline'" \
./configure \
    --prefix=/usr/local/mysql --enable-assembler \
    --with-mysqld-ldflags=-all-static --disable-shared \
    --with-low-memory

2.12.1.4. Linux Post-Installation Notes

mysql.server can be found in the support-files directory under the MySQL installation directory or in a MySQL source tree. You can install it as /etc/init.d/mysql for automatic MySQL startup and shutdown. See Section 2.9.2.2, “Starting and Stopping MySQL Automatically”.

If MySQL cannot open enough files or connections, it may be that you have not configured Linux to handle enough files.

In Linux 2.2 and onward, you can check the number of allocated file handles as follows:

shell> cat /proc/sys/fs/file-max
shell> cat /proc/sys/fs/dquot-max
shell> cat /proc/sys/fs/super-max

If you have more than 16MB of memory, you should add something like the following to your init scripts (for example, /etc/init.d/boot.local on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max
echo 1024 > /proc/sys/fs/super-max

You can also run the echo commands from the command line as root, but these settings are lost the next time your computer restarts.

Alternatively, you can set these parameters on startup by using the sysctl tool, which is used by many Linux distributions (including SuSE Linux 8.0 and later). Put the following values into a file named /etc/sysctl.conf:

# Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to /etc/my.cnf:

[mysqld_safe]
open-files-limit=8192

This should allow the server a limit of 8,192 for the combined number of connections and open files.

The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the address space. It needs to be large enough so that there is plenty of room for each individual thread stack, but small enough to keep the stack of some threads from running into the global mysqld data. Unfortunately, as we have experimentally discovered, the Linux implementation of mmap() successfully unmaps a mapped region if you ask it to map out an address currently in use, zeroing out the data on the entire page instead of returning an error. So, the safety of mysqld or any other threaded application depends on the “gentlemanly” behavior of the code that creates threads. The user must take measures to make sure that the number of running threads at any given time is sufficiently low for thread stacks to stay away from the global heap. With mysqld, you should enforce this behavior by setting a reasonable value for the max_connections variable.

If you build MySQL yourself, you can patch LinuxThreads for better stack use. See Section 2.12.1.3, “Linux Source Distribution Notes”. If you do not want to patch LinuxThreads, you should set max_connections to a value no higher than 500. It should be even less if you have a large key buffer, large heap tables, or some other things that make mysqld allocate a lot of memory, or if you are running a 2.2 kernel with a 2GB patch. If you are using our binary or RPM version, you can safely set max_connections at 1500, assuming no large key buffer or heap tables with lots of data. The more you reduce STACK_SIZE in LinuxThreads the more threads you can safely create. We recommend values between 128KB and 256KB.

If you use a lot of concurrent connections, you may suffer from a “feature” in the 2.2 kernel that attempts to prevent fork bomb attacks by penalizing a process for forking or cloning a child. This causes MySQL not to scale well as you increase the number of concurrent clients. On single-CPU systems, we have seen this manifest as very slow thread creation; it may take a long time to connect to MySQL (as long as one minute), and it may take just as long to shut it down. On multiple-CPU systems, we have observed a gradual drop in query speed as the number of clients increases. In the process of trying to find a solution, we have received a kernel patch from one of our users who claimed it helped for his site. This patch is available at http://www.mysql.com/Downloads/Patches/linux-fork.patch. We have done rather extensive testing of this patch on both development and production systems. It has significantly improved MySQL performance without causing any problems and we recommend it to our users who still run high-load servers on 2.2 kernels.

This issue has been fixed in the 2.4 kernel, so if you are not satisfied with the current performance of your system, rather than patching your 2.2 kernel, it might be easier to upgrade to 2.4. On SMP systems, upgrading also gives you a nice SMP boost in addition to fixing the fairness bug.

We have tested MySQL on the 2.4 kernel on a two-CPU machine and found MySQL scales much better. There was virtually no slowdown on query throughput all the way up to 1,000 clients, and the MySQL scaling factor (computed as the ratio of maximum throughput to the throughput for one client) was 180%. We have observed similar results on a four-CPU system: Virtually no slowdown as the number of clients was increased up to 1,000, and a 300% scaling factor. Based on these results, for a high-load SMP server using a 2.2 kernel, we definitely recommend upgrading to the 2.4 kernel at this point.

We have discovered that it is essential to run the mysqld process with the highest possible priority on the 2.4 kernel to achieve maximum performance. This can be done by adding a renice -20 $$ command to mysqld_safe. In our testing on a four-CPU machine, increasing the priority resulted in a 60% throughput increase with 400 clients.

We are currently also trying to collect more information on how well MySQL performs with a 2.4 kernel on four-way and eight-way systems. If you have access such a system and have done some benchmarks, please send an email message to with the results. We will review them for inclusion in the manual.

If you see a dead mysqld server process with ps, this usually means that you have found a bug in MySQL or you have a corrupted table. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with the --core-file option. Note that you also probably need to raise the core file size by adding ulimit -c 1000000 to mysqld_safe or starting mysqld_safe with --core-file-size=1000000. See Section 5.1.3, “mysqld_safe — MySQL Server Startup Script”.

2.12.1.5. Linux x86 Notes

MySQL requires libc 5.4.12 or newer. It is known to work with libc 5.4.46. glibc 2.0.6 and later should also work. There have been some problems with the glibc RPMs from Red Hat, so if you have problems, check whether there are any updates. The glibc 2.0.7-19 and 2.0.7-29 RPMs are known to work.

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you may see mysqld die in gethostbyaddr(). This happens because the new glibc library requires a stack size greater than 128KB for this call. To fix the problem, start mysqld with the --thread-stack=192K option. (Use -O thread_stack=192K before MySQL 4.) This stack size is the default on MySQL 4.0.10 and above, so you should not see the problem.

If you are using gcc 3.0 and above to compile MySQL, you must install the libstdc++v3 library before compiling MySQL; if you don't do this, you get an error about a missing __cxa_pure_virtual symbol during linking.

On some older Linux distributions, configure may produce an error like this:

Syntax error in sched.h. Change _P to __P in the
/usr/include/sched.h file.
See the Installation chapter in the Reference Manual.

Just do what the error message says. Add an extra underscore to the _P macro name that has only one underscore, and then try again.

You may get some warnings when compiling. Those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o
mysqld.cc: In function `void init_signals()':
mysqld.cc:315: warning: assignment of negative value `-1' to
`long unsigned int'
mysqld.cc: In function `void * signal_hand(void *)':
mysqld.cc:346: warning: assignment of negative value `-1' to
`long unsigned int'

If mysqld always dumps core when it starts, the problem may be that you have an old /lib/libc.a. Try renaming it, and then remove sql/mysqld and do a new make install and try again. This problem has been reported on some Slackware installations.

If you get the following error when linking mysqld, it means that your libg++.a is not installed correctly:

/usr/lib/libc.a(putc.o): In function `_IO_putc':
putc.o(.text+0x0): multiple definition of `_IO_putc'

You can avoid using libg++.a by running configure like this:

shell> CXX=gcc ./configure

2.12.1.6. Linux SPARC Notes

In some implementations, readdir_r() is broken. The symptom is that the SHOW DATABASES statement always returns an empty set. This can be fixed by removing HAVE_READDIR_R from config.h after configuring and before compiling.

2.12.1.7. Linux Alpha Notes

We have tested MySQL 5.1 on Alpha with our benchmarks and test suite, and it appears to work well.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-SMP, Compaq C compiler (V6.2-505) and Compaq C++ compiler (V6.3-006) on a Compaq DS20 machine with an Alpha EV6 processor.

You can find the preceding compilers at http://www.support.compaq.com/alpha-tools/. By using these compilers rather than gcc, we get about 9-14% better MySQL performance.

For MySQL on Alpha, we use the -arch generic flag to our compile options, which ensures that the binary runs on all Alpha processors. We also compile statically to avoid library problems. The configure command looks like this:

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \
CXXFLAGS="-fast -arch generic -noexceptions -nortti" \
./configure --prefix=/usr/local/mysql --disable-shared \
    --with-extra-charsets=complex --enable-thread-safe-client \
    --with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared

If you want to use egcs, the following configure line worked for us:

CFLAGS="-O3 -fomit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \
    -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --disable-shared

Some known problems when running MySQL on Linux-Alpha:

  • Debugging threaded applications like MySQL does not work with gdb 4.18. You should use gdb 5.1 instead.

  • If you try linking mysqld statically when using gcc, the resulting image dumps core at startup time. In other words, do not use --with-mysqld-ldflags=-all-static with gcc.

2.12.1.8. Linux PowerPC Notes

MySQL should work on MkLinux with the newest glibc package (tested with glibc 2.0.7).

2.12.1.9. Linux MIPS Notes

To get MySQL to work on Qube2 (Linux Mips), you need the newest glibc libraries. glibc-2.0.7-29C2 is known to work. You must also use the egcs C++ compiler (egcs 1.0.2-9, gcc 2.95.2 or newer).

2.12.1.10. Linux IA-64 Notes

To get MySQL to compile on Linux IA-64, we use the following configure command for building with gcc 2.96:

CC=gcc \
CFLAGS="-O3 -fno-omit-frame-pointer" \
CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \
    -fno-exceptions -fno-rtti" \
    ./configure --prefix=/usr/local/mysql \
    "--with-comment=Official MySQL binary" \
    --with-extra-charsets=complex

On IA-64, the MySQL client binaries use shared libraries. This means that if you install our binary distribution at a location other than /usr/local/mysql, you need to add the path of the directory where you have libmysqlclient.so installed either to the /etc/ld.so.conf file or to the value of your LD_LIBRARY_PATH environment variable.

See Section A.3.1, “Problems Linking to the MySQL Client Library”.

2.12.2. Mac OS X Notes

On Mac OS X, tar cannot handle long filenames. If you need to unpack a .tar.gz distribution, use gnutar instead.

2.12.2.1. Mac OS X 10.x (Darwin)

MySQL should work without major problems on Mac OS X 10.x (Darwin).

Known issues:

  • The connection times (wait_timeout, interactive_timeout and net_read_timeout) values are not honored.

    This is probably a signal handling problem in the thread library where the signal doesn't break a pending read and we hope that a future update to the thread libraries will fix this.

Our binary for Mac OS X is compiled on Darwin 6.3 with the following configure line:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \
    -fno-exceptions -fno-rtti" \
    ./configure --prefix=/usr/local/mysql \
    --with-extra-charsets=complex --enable-thread-safe-client \
    --enable-local-infile --disable-shared

See Section 2.5, “Installing MySQL on Mac OS X”.

2.12.2.2. Mac OS X Server 1.2 (Rhapsody)

For current versions of Mac OS X Server, no operating system changes are necessary before compiling MySQL. Compiling for the Server platform is the same as for the client version of Mac OS X.

For older versions (Mac OS X Server 1.2, a.k.a. Rhapsody), you must first install a pthread package before trying to configure MySQL.

See Section 2.5, “Installing MySQL on Mac OS X”.

2.12.3. Solaris Notes

On Solaris, you may run into trouble even before you get the MySQL distribution unpacked, as the Solaris tar cannot handle long filenames. This means that you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution. You can find a precompiled copy for Solaris at http://dev.mysql.com/downloads/os-solaris.html.

Sun native threads work only on Solaris 2.5 and higher. For Solaris 2.4 and earlier, MySQL automatically uses MIT-pthreads. See Section 2.8.5, “MIT-pthreads Notes”.

If you get the following error from configure, it means that you have something wrong with your compiler installation:

checking for restartable system calls... configure: error can not
run test programs while cross compiling

In this case, you should upgrade your compiler to a newer version. You may also be able to solve this problem by inserting the following row into the config.cache file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls='no'}

If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You can find this at http://gcc.gnu.org/. Note that egcs 1.1.1 and gcc 2.8.1 do not work reliably on SPARC.

The recommended configure line when using gcc 2.95.2 is:

CC=gcc CFLAGS="-O3" \
CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory \
    --enable-assembler

If you have an UltraSPARC system, you can get 4% better performance by adding -mcpu=v8 -Wa,-xarch=v8plusa to the CFLAGS and CXXFLAGS environment variables.

If you have Sun's Forte 5.0 (or newer) compiler, you can run configure like this:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit binary with Sun's Forte compiler, use the following configuration options:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS and remove --enable-assembler from the configure line.

In the MySQL benchmarks, we obtained a 4% speed increase on UltraSPARC when using Forte 5.0 in 32-bit mode, as compared to using gcc 3.2 with the -mcpu flag.

If you create a 64-bit mysqld binary, it is 4% slower than the 32-bit binary, but can handle more threads and memory.

When using Solaris 10 for x86_64, you should mount any filesystems on which you intend to store InnoDB files with the forcedirectio option. (By default mounting is done without this option.) Failing to do so will cause a significant drop in performance when using the InnoDB storage engine on this platform.

If you get a problem with fdatasync or sched_yield, you can fix this by adding LIBS=-lrt to the configure line

For compilers older than WorkShop 5.3, you might have to edit the configure script. Change this line:

#if !defined(__STDC__) || __STDC__ != 1

To this:

#if !defined(__STDC__)

If you turn on __STDC__ with the -Xc option, the Sun compiler can't compile with the Solaris pthread.h header file. This is a Sun bug (broken compiler or broken include file).

If mysqld issues the following error message when you run it, you have tried to compile MySQL with the Sun compiler without enabling the -mt multi-thread option:

libc internal error: _rmutex_unlock: rmutex not held

Add -mt to CFLAGS and CXXFLAGS and recompile.

If you are using the SFW version of gcc (which comes with Solaris 8), you must add /opt/sfw/lib to the environment variable LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems. To avoid this, you should recompile gcc and GNU binutils on the machine where you are running them.

If you get the following error when compiling MySQL with gcc, it means that your gcc is not configured for your version of Solaris:

shell> gcc -O3 -g -O2 -DDBUG_OFF  -o thr_alarm ...
./thr_alarm.c: In function `signal_hand':
./thr_alarm.c:556: too many arguments to function `sigwait'

The proper thing to do in this case is to get the newest version of gcc and compile it with your current gcc compiler. At least for Solaris 2.5, almost all binary versions of gcc have old, unusable include files that break all programs that use threads, and possibly other programs as well.

Solaris does not provide static versions of all system libraries (libpthreads and libdl), so you cannot compile MySQL with --static. If you try to do so, you get one of the following errors:

ld: fatal: library -ldl: not found
undefined reference to `dlopen'
cannot find -lrt

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

  • Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -Lpath).

  • Copy libmysqclient.so to /usr/lib.

  • Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable before running your client.

If you have problems with configure trying to link with -lz when you don't have zlib installed, you have two options:

  • If you want to be able to use the compressed communication protocol, you need to get and install zlib from ftp.gnu.org.

  • Run configure with the --with-named-z-libs=no option when building MySQL.

If you are using gcc and have problems with loading user-defined functions (UDFs) into MySQL, try adding -lgcc to the link line for the UDF.

If you would like MySQL to start automatically, you can copy support-files/mysql.server to /etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this. (Use -O back_log=50 before MySQL 4.)

Solaris doesn't support core files for setuid() applications, so you can't get a core file from mysqld if you are using the --user option.

2.12.3.1. Solaris 2.7/2.8 Notes

Normally, you can use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6 issues also apply for Solaris 2.7 and 2.8.

MySQL should be able to detect new versions of Solaris automatically and enable workarounds for the following problems.

Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when you use gcc:

/usr/include/widec.h:42: warning: `getwc' redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition

If this occurs, you can fix the problem by copying /usr/include/widec.h to .../lib/gcc-lib/os/gcc-version/include and changing line 41 from this:

#if     !defined(lint) && !defined(__lint)

To this:

#if     !defined(lint) && !defined(__lint) && !defined(getwc)

Alternatively, you can edit /usr/include/widec.h directly. Either way, after you make the fix, you should remove config.cache and run configure again.

If you get the following errors when you run make, it's because configure didn't detect the curses.h file (probably because of the error in /usr/include/widec.h):

In file included from mysql.cc:50:
/usr/include/term.h:1060: syntax error before `,'
/usr/include/term.h:1081: syntax error before `;'

The solution to this problem is to do one of the following:

  • Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H ./configure.

  • Edit /usr/include/widec.h as indicated in the preceding discussion and re-run configure.

  • Remove the #define HAVE_TERM line from the config.h file and run make again.

If your linker cannot find -lz when linking client programs, the problem is probably that your libz.so file is installed in /usr/local/lib. You can fix this problem by one of the following methods:

  • Add /usr/local/lib to LD_LIBRARY_PATH.

  • Add a link to libz.so from /lib.

  • If you are using Solaris 8, you can install the optional zlib from your Solaris 8 CD distribution.

  • Run configure with the --with-named-z-libs=no option when building MySQL.

2.12.3.2. Solaris x86 Notes

On Solaris 8 on x86, mysqld dumps core if you remove the debug symbols using strip.

If you are using gcc or egcs on Solaris x86 and you experience problems with core dumps under load, you should use the following configure command:

CC=gcc CFLAGS="-O3 -fomit-frame-pointer -DHAVE_CURSES_H" \
CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \
    -fno-exceptions -fno-rtti -DHAVE_CURSES_H" \
./configure --prefix=/usr/local/mysql

This avoids problems with the libstdc++ library and with C++ exceptions.

If this doesn't help, you should compile a debug version and run it with a trace file or under gdb. See Section E.1.3, “Debugging mysqld under gdb.

2.12.4. BSD Notes

This section provides information about using MySQL on variants of BSD Unix.

2.12.4.1. FreeBSD Notes

FreeBSD 4.x or newer is recommended for running MySQL, because the thread package is much more integrated. To get a secure and stable system, you should use only FreeBSD kernels that are marked -RELEASE.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client ports available at http://www.freebsd.org/. Using these ports gives you the following benefits:

  • A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

  • Automatic configuration and build.

  • Startup scripts installed in /usr/local/etc/rc.d.

  • The ability to use pkg_info -L to see which files are installed.

  • The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x, and native threads on FreeBSD 3 and up. It is possible to run with native threads on some late 2.2.x versions, but you may encounter problems shutting down mysqld.

Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe. Most notably, this includes the gethostbyname() function, which is used by MySQL to convert hostnames into IP addresses. Under certain circumstances, the mysqld process suddenly causes 100% CPU load and is unresponsive. If you encounter this problem, try to start MySQL using the --skip-name-resolve option.

Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads library, which avoids a few of the problems that the native FreeBSD thread implementation has. For a very good comparison of LinuxThreads versus native threads, see Jeremy Zawodny's article FreeBSD or Linux for your MySQL Server? at http://jeremy.zawodny.com/blog/archives/000697.html.

Known problem when using LinuxThreads on FreeBSD is:

  • The connection times (wait_timeout, interactive_timeout and net_read_timeout) values are not honored. The symptom is that persistent connections can hang for a very long time without getting closed down and that a 'kill' for a thread will not take affect until the thread does it a new command

    This is probably a signal handling problem in the thread library where the signal doesn't break a pending read. This is supposed to be fixed in FreeBSD 5.0

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you must install it first before compiling MySQL.

The recommended way to compile and install MySQL on FreeBSD with gcc (2.95.2 and up) is:

CC=gcc CFLAGS="-O2 -fno-strength-reduce" \
    CXX=gcc CXXFLAGS="-O2 -fno-rtti -fno-exceptions \
    -felide-constructors -fno-strength-reduce" \
    ./configure --prefix=/usr/local/mysql --enable-assembler
gmake
gmake install
cd /usr/local/mysql
bin/mysql_install_db --user=mysql
bin/mysqld_safe &

If you notice that configure uses MIT-pthreads, you should read the MIT-pthreads notes. See Section 2.8.5, “MIT-pthreads Notes”.

If you get an error from make install that it can't find /usr/include/pthreads, configure didn't detect that you need MIT-pthreads. To fix this problem, remove config.cache, and then re-run configure with the --with-mit-threads option.

Be sure that your name resolver setup is correct. Otherwise, you may experience resolver delays or failures when connecting to mysqld. Also make sure that the localhost entry in the /etc/hosts file is correct. The file should start with a line similar to this:

127.0.0.1       localhost localhost.your.domain

FreeBSD is known to have a very low default file handle limit. See Section A.2.17, “File Not Found”. Start the server by using the --open-files-limit option for mysqld_safe, or raise the limits for the mysqld user in /etc/login.conf and rebuild it with cap_mkdb /etc/login.conf. Also be sure that you set the appropriate class for this user in the password file if you are not using the default (use chpass mysqld-user-name). See Section 5.1.3, “mysqld_safe — MySQL Server Startup Script”.

FreeBSD limits the size of a process to 512MB, even if you have much more RAM available on the system. So you may get an error such as this:

Out of memory (Needed 16391 bytes)

In current versions of FreeBSD (at least 4.x and greater), you may increase this limit by adding the following entries to the /boot/loader.conf file and rebooting the machine (these are not settings that can be changed at run time with the sysctl command):

kern.maxdsiz="1073741824" # 1GB
kern.dfldsiz="1073741824" # 1GB
kern.maxssiz="134217728" # 128MB

For older versions of FreeBSD, you must recompile your kernel in order to change the maximum data segment size for a process. In this case, you should look at the MAXDSIZ option in the LINT config file for more information.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Appendix F, Environment Variables.

2.12.4.2. NetBSD Notes

To compile on NetBSD, you need GNU make. Otherwise, the build process fails when make tries to run lint on C++ files.

2.12.4.3. OpenBSD 2.5 Notes

On OpenBSD 2.5, you can compile MySQL with native threads with the following options:

CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

2.12.4.4. BSD/OS Version 2.x Notes

If you get the following error when compiling MySQL, your ulimit value for virtual memory is too low:

item_func.h: In method
`Item_func_ge::Item_func_ge(const Item_func_ge &)':
item_func.h:28: virtual memory exhausted
make[2]: *** [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn't work and you are using bash, try switching to csh or sh; some BSDI users have reported problems with bash and ulimit.

If you are using gcc, you may also use have to use the --with-low-memory flag for configure to be able to compile sql_yacc.cc.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Appendix F, Environment Variables.

2.12.4.5. BSD/OS Version 3.x Notes

Upgrade to BSD/OS 3.1. If that is not possible, install BSDIpatch M300-038.

Use the following command when configuring MySQL:

env CXX=shlicc++ CC=shlicc2 \
./configure \
    --prefix=/usr/local/mysql \
    --localstatedir=/var/mysql \
    --without-perl \
    --with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

env CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure \
    --prefix=/usr/local/mysql \
    --with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying any locations.

If you have problems with performance under heavy load, try using the --skip-thread-priority option to mysqld. This runs all threads with the same priority. On BSDI 3.1, this gives better performance, at least until BSDI fixes its thread scheduler.

If you get the error virtual memory exhausted while compiling, you should try using ulimit -v 80000 and running make again. If this doesn't work and you are using bash, try switching to csh or sh; some BSDI users have reported problems with bash and ulimit.

2.12.4.6. BSD/OS Version 4.x Notes

BSDI 4.x has some thread-related bugs. If you want to use MySQL on this, you should install all thread-related patches. At least M400-023 should be installed.

On some BSDI 4.x systems, you may get problems with shared libraries. The symptom is that you can't execute any client programs, for example, mysqladmin. In this case, you need to reconfigure not to use shared libraries with the --disable-shared option to configure.

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while can't open tables. This occurs because some library/system-related bug causes mysqld to change current directory without having asked for that to happen.

The fix is to either upgrade MySQL to at least version 3.23.34 or, after running configure, remove the line #define HAVE_REALPATH from config.h before running make.

Note that this means that you can't symbolically link a database directories to another database directory or symbolic link a table to another database on BSDI. (Making a symbolic link to another disk is okay).

2.12.5. Other Unix Notes

2.12.5.1. HP-UX Version 10.20 Notes

There are a couple of small problems when compiling MySQL on HP-UX. We recommend that you use gcc instead of the HP-UX native compiler, because gcc produces better code.

We recommend using gcc 2.95 on HP-UX. Don't use high optimization flags (such as -O6) because they may not be safe on HP-UX.

The following configure line should work with gcc 2.95:

CFLAGS="-I/opt/dce/include -fpic" \
CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti" \
CXX=gcc \
./configure --with-pthread \
    --with-named-thread-libs='-ldce' \
    --prefix=/usr/local/mysql --disable-shared

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc \
CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors \
    -fno-exceptions -fno-rtti -O3 -fPIC" \
./configure --prefix=/usr/local/mysql \
    --with-extra-charsets=complex --enable-thread-safe-client \
    --enable-local-infile  --with-pthread \
    --with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC
    --disable-shared

2.12.5.2. HP-UX Version 11.x Notes

Because of some critical bugs in the standard HP-UX libraries, you should install the following patches before trying to run MySQL on HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This solves the problem of getting EWOULDBLOCK from recv() and EBADF from accept() in threaded applications.

If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you may get the following error:

In file included from /usr/include/unistd.h:11,
                 from ../include/global.h:125,
                 from mysql_priv.h:15,
                 from item.cc:19:
/usr/include/sys/unistd.h:184: declaration of C function ...
/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,
                 from mysql_priv.h:158,
                 from item.cc:19:

The problem is that HP-UX does not define pthreads_atfork() consistently. It has conflicting prototypes in /usr/include/sys/unistd.h:184 and /usr/include/sys/pthread.h:440.

One solution is to copy /usr/include/sys/unistd.h into mysql/include and edit unistd.h and change it to match the definition in pthread.h. Look for this line:

extern int pthread_atfork(void (*prepare)(), void (*parent)(),
                                          void (*child)());

Change it to look like this:

extern int pthread_atfork(void (*prepare)(void), void (*parent)(void),
                                          void (*child)(void));

After making the change, the following configure line should work:

CFLAGS="-fomit-frame-pointer -O3 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -O3" \
./configure --prefix=/usr/local/mysql --disable-shared

If you are using HP-UX compiler, you can use the following command (which has been tested with cc B.11.11.04):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure \
    --with-extra-character-set=complex

You can ignore any errors of the following type:

aCC: warning 901: unknown option: `-3': use +help for online
documentation

If you get the following error from configure, verify that you don't have the path to the K&R compiler before the path to the HP-UX C and C++ compiler:

checking for cc option to accept ANSI C... no
configure: error: MySQL requires an ANSI C compiler (and a C++ compiler).
Try gcc. See the Installation chapter in the Reference Manual.

Another reason for not being able to compile is that you didn't define the +DD64 flags as just described.

Another possibility for HP-UX 11 is to use the MySQL binaries provided at http://dev.mysql.com/downloads/, which we have built and tested ourselves. We have also received reports that the HP-UX 10.20 binaries supplied by MySQL can be run successfully on HP-UX 11. If you encounter problems, you should be sure to check your HP-UX patch level.

2.12.5.3. IBM-AIX notes

Automatic detection of xlC is missing from Autoconf, so a number of variables need to be set before running configure. The following example uses the IBM compiler:

export CC="xlc_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192 "
export CXX="xlC_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192"
export CFLAGS="-I /usr/local/include"
export LDFLAGS="-L /usr/local/lib"
export CPPFLAGS=$CFLAGS
export CXXFLAGS=$CFLAGS

./configure --prefix=/usr/local \
                --localstatedir=/var/mysql \
                --sbindir='/usr/local/bin' \
                --libexecdir='/usr/local/bin' \
                --enable-thread-safe-client \
                --enable-large-files

The preceding options are used to compile the MySQL distribution that can be found at http://www-frec.bull.com/.

If you change the -O3 to -O2 in the preceding configure line, you must also remove the -qstrict option. This is a limitation in the IBM C compiler.

If you are using gcc or egcs to compile MySQL, you must use the -fno-exceptions flag, because the exception handling in gcc/egcs is not thread-safe! (This is tested with egcs 1.1.) There are also some known problems with IBM's assembler that may cause it to generate bad code when used with gcc.

We recommend the following configure line with egcs and gcc 2.95 on AIX:

CC="gcc -pipe -mcpu=power -Wa,-many" \
CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many option is necessary for the compile to be successful. IBM is aware of this problem but is in no hurry to fix it because of the workaround that is available. We don't know if the -fno-exceptions is required with gcc 2.95, but because MySQL doesn't use exceptions and the option generates faster code, we recommend that you should always use it with egcs / gcc.

If you get a problem with assembler code, try changing the -mcpu=xxx option to match your CPU. Typically power2, power, or powerpc may need to be used. Alternatively, you might need to use 604 or 604e. We are not positive but suspect that power would likely be safe most of the time, even on a power2 machine.

If you don't know what your CPU is, execute a uname -m command. It produces a string that looks like 000514676700, with a format of xxyyyyyymmss where xx and ss are always 00, yyyyyy is a unique system ID and mm is the ID of the CPU Planar. A chart of these values can be found at http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm.

This gives you a machine type and a machine model you can use to determine what type of CPU you have.

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an OS bug with threads and signals. In this case, you can tell MySQL not to use signals by configuring as follows:

CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \
-DDONT_USE_THR_ALARM" \
./configure --prefix=/usr/local/mysql --with-debug \
    --with-low-memory

This doesn't affect the performance of MySQL, but has the side effect that you can't kill clients that are “sleeping” on a connection with mysqladmin kill or mysqladmin shutdown. Instead, the client dies when it issues its next command.

On some versions of AIX, linking with libbind.a makes getservbyname() dump core. This is an AIX bug and should be reported to IBM.

For AIX 4.2.1 and gcc, you have to make the following changes.

After configuring, edit config.h and include/my_config.h and change the line that says this:

#define HAVE_SNPRINTF 1

to this:

#undef HAVE_SNPRINTF

And finally, in mysqld.cc, you need to add a prototype for initgroups().

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

If you need to allocate a lot of memory to the mysqld process, it's not enough to just use ulimit -d unlimited. You may also have to modify mysqld_safe to add a line something like this:

export LDR_CNTRL='MAXDATA=0x80000000'

You can find more information about using a lot of memory at http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm.

2.12.5.4. SunOS 4 Notes

On SunOS 4, MIT-pthreads is needed to compile MySQL. This in turn means you need GNU make.

Some SunOS 4 systems have problems with dynamic libraries and libtool. You can use the following configure line to avoid this problem:

./configure --disable-shared --with-mysqld-ldflags=-all-static

When compiling readline, you may get warnings about duplicate defines. These can be ignored.

When compiling mysqld, there are some implicit declaration of function warnings. These can be ignored.

2.12.5.5. Alpha-DEC-UNIX Notes (Tru64)

If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, because egcs on DEC has some serious bugs!

When compiling threaded programs under Digital Unix, the documentation recommends using the -pthread option for cc and cxx and the -lmach -lexc libraries (in addition to -lpthread). You should run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -O" \
./configure --with-named-thread-libs="-lpthread -lmach -lexc -lc"

When compiling mysqld, you may see a couple of warnings like this:

mysqld.cc: In function void handle_connections()':
mysqld.cc:626: passing long unsigned int *' as argument 3 of
accept(int,sockadddr *, int *)'

You can safely ignore these warnings. They occur because configure can detect only errors, not warnings.

If you start the server directly from the command line, you may have problems with it dying when you log out. (When you log out, your outstanding processes receive a SIGHUP signal.) If so, try starting the server like this:

nohup mysqld [options] &

nohup causes the command following it to ignore any SIGHUP signal sent from the terminal. Alternatively, start the server by running mysqld_safe, which invokes mysqld using nohup for you. See Section 5.1.3, “mysqld_safe — MySQL Server Startup Script”.

If you get a problem when compiling mysys/get_opt.c, just remove the #define _NO_PROTO line from the start of that file.

If you are using Compaq's CC compiler, the following configure line should work:

CC="cc -pthread"
CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed all -arch host"
CXX="cxx -pthread"
CXXFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed all \
    -arch host -noexceptions -nortti"
export CC CFLAGS CXX CXXFLAGS
./configure \
    --prefix=/usr/local/mysql \
    --with-low-memory \
    --enable-large-files \
    --enable-shared=yes \
    --with-named-thread-libs="-lpthread -lmach -lexc -lc"
gnumake

If you get a problem with libtool when compiling with shared libraries as just shown, when linking mysql, you should be able to get around this by issuing these commands:

cd mysql
/bin/sh ../libtool --mode=link cxx -pthread  -O3 -DDBUG_OFF \
    -O4 -ansi_alias -ansi_args -fast -inline speed \
    -speculate all \ -arch host  -DUNDEF_HAVE_GETHOSTBYNAME_R \
    -o mysql  mysql.o readline.o sql_string.o completion_hash.o \
    ../readline/libreadline.a -lcurses \
    ../libmysql/.libs/libmysqlclient.so  -lm
cd ..
gnumake
gnumake install
scripts/mysql_install_db

2.12.5.6. Alpha-DEC-OSF/1 Notes

If you have problems compiling and have DEC CC and gcc installed, try running configure like this:

CC=cc CFLAGS=-O CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

If you get problems with the c_asm.h file, you can create and use a 'dummy' c_asm.h file with:

touch include/c_asm.h
CC=gcc CFLAGS=-I./include \
CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

Note that the following problems with the ld program can be fixed by downloading the latest DEC (Compaq) patch kit from: http://ftp.support.compaq.com/public/unix/.

On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)," the compiler had some strange behavior (undefined asm symbols). /bin/ld also appears to be broken (problems with _exit undefined errors occurring while linking mysqld). On this system, we have managed to compile MySQL with the following configure line, after replacing /bin/ld with the version from OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql

With the Digital compiler "C++ V6.1-029," the following should work:

CC=cc -pthread
CFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \
       -speculate all -arch host
CXX=cxx -pthread
CXXFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \
         -speculate all -arch host -noexceptions -nortti
export CC CFLAGS CXX CXXFLAGS
./configure --prefix=/usr/mysql/mysql \
            --with-mysqld-ldflags=-all-static --disable-shared \
            --with-named-thread-libs="-lmach -lexc -lc"

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line in config.h that defines 'HAVE_ALLOCA'.

The alloca() function also may have an incorrect prototype in /usr/include/alloca.h. This warning resulting from this can be ignored.

configure uses the following thread libraries automatically: --with-named-thread-libs="-lpthread -lmach -lexc -lc".

When using gcc, you can also try running configure like this:

CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-O3 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an OS bug with threads and signals. In this case, you can tell MySQL not to use signals by configuring with:

CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

This does not affect the performance of MySQL, but has the side effect that you can't kill clients that are “sleeping” on a connection with mysqladmin kill or mysqladmin shutdown. Instead, the client dies when it issues its next command.

With gcc 2.95.2, you may encounter the following compile error:

sql_acl.cc:1456: Internal compiler error in `scan_region',
at except.c:2566
Please submit a full bug report.

To fix this, you should change to the sql directory and do a cut-and-paste of the last gcc line, but change -O3 to -O0 (or add -O0 immediately after gcc if you don't have any -O option on your compile line). After this is done, you can just change back to the top-level directory and run make again.

2.12.5.7. SGI Irix Notes

If you are using Irix 6.5.3 or newer, mysqld is able to create threads only if you run it as a user that has CAP_SCHED_MGT privileges (such as root) or give the mysqld server this privilege with the following shell command:

chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld

You may have to undefine some symbols in config.h after running configure and before compiling.

In some Irix implementations, the alloca() function is broken. If the mysqld server dies on some SELECT statements, remove the lines from config.h that define HAVE_ALLOC and HAVE_ALLOCA_H. If mysqladmin create doesn't work, remove the line from config.h that defines HAVE_READDIR_R. You may have to remove the HAVE_TERM_H line as well.

SGI recommends that you install all the patches on this page as a set: http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest rld rollup, and the latest libc rollup.

You definitely need all the POSIX patches on this page, for pthreads support:

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

If you get the something like the following error when compiling mysql.cc:

"/usr/include/curses.h", line 82: error(1084):
invalid combination of type

Type the following in the top-level directory of your MySQL source tree:

extra/replace bool curses_bool < /usr/include/curses.h > include/curses.h
make

There have also been reports of scheduling problems. If only one thread is running, performance is slow. Avoid this by starting another client. This may lead to a two-to-tenfold increase in execution speed thereafter for the other thread. This is a poorly understood problem with Irix threads; you may have to improvise to find solutions until this can be fixed.

If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \
    --with-named-thread-libs=-lpthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported to work

CC=cc CXX=CC CFLAGS='-O3 -n32 -TARG:platform=IP22 -I/usr/local/include \
-L/usr/local/lib' CXXFLAGS='-O3 -n32 -TARG:platform=IP22 \
-I/usr/local/include -L/usr/local/lib' \
./configure --prefix=/usr/local/mysql --with-innodb --with-berkeley-db \
    --with-libwrap=/usr/local \
    --with-named-curses-libs=/usr/local/lib/libncurses.a

2.12.5.8. SCO UNIX and OpenServer 5.0.x Notes

The current port is tested only on sco3.2v5.0.5, sco3.2v5.0.6, and sco3.2v5.0.7 systems. There has also been progress on a port to sco3.2v4.2. Open Server 5.0.8 (Legend) has native threads and allows files greater than 2GB. The current maximum file size is 2GB.

We have been able to compile MySQL with the following configure command on OpenServer with gcc 2.95.3.

CC=gcc CXX=gcc ./configure --prefix=/usr/local/mysql \
    --enable-thread-safe-client --with-innodb \
    --with-openssl --with-vio --with-extra-charsets=complex

gcc is available at ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj.

This development system requires the OpenServer Execution Environment Supplement oss646B on OpenServer 5.0.6 and oss656B and The OpenSource libraries found in gwxlibs. All OpenSource tools are in the opensrc directory. They are available at ftp://ftp.sco.com/pub/openserver5/opensrc/.

We recommend using the latest production release of MySQL.

SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.[0-6] and ftp://ftp.sco.com/pub/openserverv5/507 for OpenServer 5.0.7.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer for OpenServer 5.0.x.

The maximum file size on an OpenSever 5.0.x system is 2GB.

The total memory which can be allocated for streams buffers, clists, and lock records cannot exceed 60MB on OpenServer 5.0.x.

Streams buffers are allocated in units of 4096 byte pages, clists are 70 bytes each, and lock records are 64 bytes each, so:

(NSTRPAGES * 4096) + (NCLIST * 70) + (MAX_FLCKREC * 64) <= 62914560

Follow this procedure to configure the Database Services option. If you are unsure whether an application requires this, see the documentation provided with the application.

  1. Log in as root.

  2. Enable the SUDS driver by editing the /etc/conf/sdevice.d/suds file. Change the N in the second field to a Y.

  3. Use mkdev aio or the Hardware/Kernel Manager to enable support for asynchronous I/O and relink the kernel. To allow users to lock down memory for use with this type of I/O, update the aiomemlock(F) file. This file should be updated to include the names of users that can use AIO and the maximum amounts of memory they can lock down.

  4. Many applications use setuid binaries so that you need to specify only a single user. See the documentation provided with the application to see whether this is the case for your application.

After you complete this process, reboot the system to create a new kernel incorporating these changes.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value           Default         Min             Max
-----           -------         ---             ---
NBUF            0               24              450000
NHBUF           0               32              524288
NMPBUF          0               12              512
MAX_INODE       0               100             64000
MAX_FILE        0               100             64000
CTBUFSIZE       128             0               256
MAX_PROC        0               50              16000
MAX_REGION      0               500             160000
NCLIST          170             120             16640
MAXUP           100             15              16000
NOFILES         110             60              11000
NHINODE         128             64              8192
NAUTOUP         10              0               60
NGROUPS         8               0               128
BDFLUSHR        30              1               300
MAX_FLCKREC     0               50              16000
PUTBUFSZ        8000            2000            20000
MAXSLICE        100             25              100
ULIMIT          4194303         2048            4194303
* Streams Parameters
NSTREAM         64              1               32768
NSTRPUSH        9               9               9
NMUXLINK        192             1               4096
STRMSGSZ        16384           4096            524288
STRCTLSZ        1024            1024            1024
STRMAXBLK       524288          4096            524288
NSTRPAGES       500             0               8000
STRSPLITFRAC    80              50              100
NLOG            3               3               3
NUMSP           64              1               256
NUMTIM          16              1               8192
NUMTRW          16              1               8192
* Semaphore Parameters
SEMMAP          10              10              8192
SEMMNI          10              10              8192
SEMMNS          60              60              8192
SEMMNU          30              10              8192
SEMMSL          25              25              150
SEMOPM          10              10              1024
SEMUME          10              10              25
SEMVMX          32767           32767           32767
SEMAEM          16384           16384           16384
* Shared Memory Parameters
SHMMAX          524288          131072          2147483647
SHMMIN          1               1               1
SHMMNI          100             100             2000
FILE            0               100             64000
NMOUNT          0               4               256
NPROC           0               50              16000
NREGION         0               500             160000

We recommend setting these values as follows:

NOFILES should be 4096 or 2048.

MAXUP should be 2048.

To make changes to the kernel, cd to /etc/conf/bin and use ./idtune name parameter to make the changes. For example, to change SEMMS to 200, execute these commands as root:

# cd /etc/conf/bin
# ./idtune SEMMNS 200

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application or database and size the of the database (that is, the used buffer pool). The following affects the kernel parameters defined in /etc/conf/cf.d/stune:

SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have influence on the MySQL database engine to create user buffer pools.

NOFILES and MAXUP should be at to at least 2048.

MAXPROC should be set to at least 3000/4000 (depends on number of users) or more.

Also is recommended to use following formula to count value for SEMMSL, SEMMNS and SEMMNU:

SEMMSL = 13

The 13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL * number of db servers to be run on the system.

Set SEMMNS to the value of SEMMSL multiplied by the number of db servers (maximum) that you are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conservative estimate.

You need to at least install the "SCO OpenServer Linker and Application Development Libraries" or the OpenServer Development System to use gcc. You cannot just use the GCC Dev system without installing one of these.

You should get the FSU Pthreads package and install it first. This can be found at http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz. You can also get a precompiled package from ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz.

FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip, or using OpenServer 3.0 or Open Desktop 3.0 (OS 3.0 ODT 3.0) with the SCO Development System installed using a good port of GCC 2.5.x. For ODT or OS 3.0, you need a good port of GCC 2.5.x. There are a lot of problems without a good port. The port for this product requires the SCO Unix Development system. Without it, you are missing the libraries and the linker that is needed. You also need SCO-3.2v4.2-includes.tar.gz. This file contains the changes to the SCO Development include files that are needed to get MySQL to build. You need to replace the existing system include files with these modified header files. They can be obtained from ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

To build FSU Pthreads on your system, all you should need to do is run GNU make. The Makefile in FSU-threads-3.14.tar.gz is set up to make FSU-threads.

You can run ./configure in the threads/src directory and select the SCO OpenServer option. This command copies Makefile.SCO5 to Makefile. Then run make.

To install in the default /usr/include directory, log in as root, and then cd to the thread/src directory and run make install.

Remember that you must use GNU make to build MySQL.

Note: If you don't start mysqld_safe as root, you should get only the default 110 open files per process. mysqld writes a note about this in the log file.

With SCO 3.2V4.2, you should use FSU Pthreads version 3.14 or newer. The following configure command should work:

CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \
./configure \
    --prefix=/usr/local/mysql \
    --with-named-thread-libs="-lgthreads -lsocket -lgen -lgthreads" \
    --with-named-curses-libs="-lcurses"

You may have problems with some include files. In this case, you can find new SCO-specific include files at ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

You should unpack this file in the include directory of your MySQL source tree.

SCO development notes:

  • MySQL should automatically detect FSU Pthreads and link mysqld with -lgthreads -lsocket -lgthreads.

  • The SCO development libraries are re-entrant in FSU Pthreads. SCO claims that its library functions are re-entrant, so they must be re-entrant with FSU Pthreads. FSU Pthreads on OpenServer tries to use the SCO scheme to make re-entrant libraries.

  • FSU Pthreads (at least the version at ftp::/ftp.zenez.com) comes linked with GNU malloc. If you encounter problems with memory usage, make sure that gmalloc.o is included in libgthreads.a and libgthreads.so.

  • In FSU Pthreads, the following system calls are pthreads-aware: read(), write(), getmsg(), connect(), accept(), select(), and wait().

  • The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr_remap security patch (version 2.0.0)) breaks FSU threads and makes mysqld unstable. You have to remove this one if you want to run mysqld on an OpenServer 5.0.6 machine.

  • If you use SCO OpenServer 5, you may need to recompile FSU pthreads with -DDRAFT7 in CFLAGS. Otherwise, InnoDB may hang at a mysqld startup.

  • SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.x.

  • SCO provides security fixes and libsocket.so.2 at ftp://ftp.sco.com/pub/security/OpenServer and ftp://ftp.sco.com/pub/security/sse for OpenServer 5.0.x.

  • Pre-OSR506 security fixes. Also, the telnetd fix at ftp://stage.caldera.com/pub/security/openserver/ or ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/ as both libsocket.so.2 and libresolv.so.1 with instructions for installing on pre-OSR506 systems.

    It's probably a good idea to install these patches before trying to compile/use MySQL.

Beginning with Legend/OpenServer 6.0.0, there are native threads and no 2GB file size limit.

2.12.5.9. SCO OpenServer 6.0.x Notes

OpenServer 6 includes these key improvements:

  • Larger file support up to 1 TB

  • Multiprocessor support increased from 4 to 32 processors

  • Increased memory support up to 64 GB

  • Extending the power of UnixWare into OpenServer 6

  • Dramatic performance improvement

OpenServer 6.0.0 commands are organized as follows:

  • /bin is for commands that behave exactly the same as on OpenServer 5.0.x.

  • /u95/bin is for commands that have better standards conformance, for example Large File System (LFS) support.

  • /udk/bin is for commands that behave the same as on UnixWare 7.1.4. The default is for the LFS support.

The following is a guide to setting PATH on OpenServer 6. If the user wants the traditional OpenServer 5.0.x then PATH should be /bin first. If the user wants LFS support then the path should be /u95/bin:/bin. If the user want UnixWare 7 support first then the path would be /udk/bin:/u95/bin:/bin:.

We recommend using the latest production release of MySQL.

We have been able to compile MySQL with the following configure command on OpenServer 6.0.x:

CC="cc" CFLAGS="-I/usr/local/include" \
CXX="CC" CXXFLAGS="-I/usr/local/include" \
./configure --prefix=/usr/local/mysql \
    --enable-thread-safe-client --with-berkeley-db=./bdb \
    --with-innodb --with-openssl --with-extra-charsets=complex \
    --enable-readline

If you want to use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++ ./configure --prefix=/usr/local/mysql

The version of Berkeley DB that comes with either UnixWare 7.1.4 or OpenServer 6.0.0 is not used when building MySQL. MySQL instead uses its own version of Berkeley DB. The configure command needs to build both a static and a dynamic library in src_directory/bdb/build_unix/, but it does not with MySQL's own BDB version. The workaround is as follows.

  1. Configure as normal for MySQL.

  2. cd bdb/build_unix/

  3. cp -p Makefile to Makefile.sav

  4. Use same options and run ../dist/configure.

  5. Run gmake.

  6. cp -p Makefile.sav Makefile

  7. Change to top source directory and run gmake.

This allows both the shared and dynamic libraries to be made and work. OpenServer 6.0.0 also needs patches to the MySQL source tree and the patch for config.guess applied to bdb/dist/config.guess. You can download the patches from ftp://ftp.zenez.com/pub/zenez/prgms/mysql-4.1.12-osr6-patches.tar.gz and from ftp://ftp.zenez.com/pub/zenez/prgms/mysql-4.x.x-osr6-patches. There is a README file there to assist.

SCO provides OpenServer 6 operating system patches at ftp://ftp.sco.com/pub/openserver6.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer.

By default, the maximum file size on a OpenServer 6.0.0 system is 1TB. Some operating system utilities have a limitation of 2GB. The maximum possible file size on UnixWare 7 is 1TB with VXFS or HTFS.

By default, the entries in /etc/conf/cf.d/mtune are set to:

Value           Default         Min             Max
-----           -------         ---             ---
SVMMLIM         0x9000000       0x1000000       0x7FFFFFFF
HVMMLIM         0x9000000       0x1000000       0x7FFFFFFF
SSTKLIM         0x1000000       0x2000          0x7FFFFFFF
HSTKLIM         0x1000000       0x2000          0x7FFFFFFF

We recommend setting these values as follows:

SDATLIM 0x7FFFFFFF
HDATLIM 0x7FFFFFFF
SSTKLIM 0x7FFFFFFF
HSTKLIM 0x7FFFFFFF
SVMMLIM 0x7FFFFFFF
HVMMLIM 0x7FFFFFFF
SFNOLIM 2048
HFNOLIM 2048

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application or database and size the of the database (that is, the used buffer pool). The following affects the kernel parameters defined in /etc/conf/cf.d/stune:

SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have influence on the MySQL database engine to create user buffer pools.

SFNOLIM and HFNOLIM should be at maximum 2048.

NPROC should be set to at least 3000/4000 (depends on number of users).

Also is recommended to use following formula to count value for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL * number of db servers to be run on the system.

Set SEMMNS to the value of SEMMSL multiplied by the number of db servers (maximum) that you are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conservative estimate.

2.12.5.10. SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes

We recommend using the latest production release of MySQL.

We have been able to compile MySQL with the following configure command on UnixWare 7.1.x:

CC="cc" CFLAGS="-I/usr/local/include" \
CXX="CC" CXXFLAGS="-I/usr/local/include" \
./configure --prefix=/usr/local/mysql \
    --enable-thread-safe-client --with-berkeley-db=./bdb \
    --with-innodb --with-openssl --with-extra-charsets=complex

If you want to use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++ ./configure --prefix=/usr/local/mysql

The version of Berkeley DB that comes with either UnixWare 7.1.4 or OpenServer 6.0.0 is not used when building MySQL. MySQL instead uses its own version of Berkeley DB. The configure command needs to build both a static and a dynamic library in src_directory/bdb/build_unix/, but it does not with MySQL's own BDB version. The workaround is as follows.

  1. Configure as normal for MySQL.

  2. cd bdb/build_unix/

  3. cp -p Makefile to Makefile.sav

  4. Use same options and run ../dist/configure.

  5. Run gmake.

  6. cp -p Makefile.sav Makefile

  7. Change to top source directory and run gmake.

This allows both the shared and dynamic libraries to be made and work.

SCO provides operating system patches at ftp://ftp.sco.com/pub/unixware7 for UnixWare 7.1.1, ftp://ftp.sco.com/pub/unixware7/713/ for UnixWare 7.1.3, ftp://ftp.sco.com/pub/unixware7/714/ for UnixWare 7.1.4, and ftp://ftp.sco.com/pub/openunix8 for OpenUNIX 8.0.0.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenUNIX for OpenUNIX and ftp://ftp.sco.com/pub/security/UnixWare for UnixWare.

By default, the maximum file size on a UnixWare 7.1.1 system is 1GB, but UnixWare 7.1.4 file size limit is 1 TB with VXFS. Some OS utilities have a limitation of 2GB. The maximum possible file size on UnixWare 7 is 1TB with VXFS.

On UnixWare 7.1.4 you do not need to do anything to get large file support, but to enable large file support on prior versions of UnixWare 7.1.x, run fsadm.

# fsadm -Fvxfs -o largefiles /
# fsadm /         * Note
# ulimit unlimited
# cd /etc/conf/bin
# ./idtune SFSZLIM 0x7FFFFFFF     ** Note
# ./idtune HFSZLIM 0x7FFFFFFF     ** Note
# ./idbuild -B

* This should report "largefiles".
** 0x7FFFFFFF represents infinity for these values.

Reboot the system using shutdown.

By default, the entries in /etc/conf/cf.d/mtune are set to:

Value           Default         Min             Max
-----           -------         ---             ---
SVMMLIM         0x9000000       0x1000000       0x7FFFFFFF
HVMMLIM         0x9000000       0x1000000       0x7FFFFFFF
SSTKLIM         0x1000000       0x2000          0x7FFFFFFF
HSTKLIM         0x1000000       0x2000          0x7FFFFFFF

We recommend setting these values as follows:

SDATLIM 0x7FFFFFFF
HDATLIM 0x7FFFFFFF
SSTKLIM 0x7FFFFFFF
HSTKLIM 0x7FFFFFFF
SVMMLIM 0x7FFFFFFF
HVMMLIM 0x7FFFFFFF
SFNOLIM 2048
HFNOLIM 2048

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application or database and size the of the database (that is, the used buffer pool). The following affects the kernel parameters defined in /etc/conf/cf.d/stune:

SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have influence on the MySQL database engine to create user buffer pools.

SFNOLIM and HFNOLIM should be at maximum 2048.

NPROC should be set to at least 3000/4000 (depends on number of users).

Also is recommended to use following formula to count value for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL * number of db servers to be run on the system.

Set SEMMNS to the value of SEMMSL multiplied by the number of db servers (maximum) that you are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conservative estimate.

2.12.6. OS/2 Notes

MySQL uses quite a few open files. Because of this, you should add something like the following to your CONFIG.SYS file:

SET EMXOPT=-c -n -h1024

If you don't do this, you may encounter the following error:

File 'xxxx' not found (Errcode: 24)

When using MySQL with OS/2 Warp 3, FixPack 29 or above is required. With OS/2 Warp 4, FixPack 4 or above is required. This is a requirement of the Pthreads library. MySQL must be installed on a partition with a type that supports long filenames, such as HPFS, FAT32, and so on.

The INSTALL.CMD script must be run from OS/2's own CMD.EXE and may not work with replacement shells such as 4OS2.EXE.

The scripts/mysql-install-db script has been renamed. It is called install.cmd and is a REXX script, which sets up the default MySQL security settings and creates the WorkPlace Shell icons for MySQL.

Dynamic module support is compiled in but not fully tested. Dynamic modules should be compiled using the Pthreads runtime library.

gcc -Zdll -Zmt -Zcrtdll=pthrdrtl -I../include -I../regex -I.. \
    -o example udf_example.cc -L../lib -lmysqlclient udf_example.def
mv example.dll example.udf

Note: Due to limitations in OS/2, UDF module name stems must not exceed eight characters. Modules are stored in the /mysql2/udf directory; the safe-mysqld.cmd script puts this directory in the BEGINLIBPATH environment variable. When using UDF modules, specified extensions are ignored---it is assumed to be .udf. For example, in Unix, the shared module might be named example.so and you would load a function from it like this:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'example.so';

In OS/2, the module would be named example.udf, but you would not specify the module extension:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'example';

2.13. Perl Installation Notes

Perl support for MySQL is provided by means of the DBI/DBD client interface. The interface requires Perl 5.6.1 or later. It does not work if you have an older version of Perl.

If you want to use transactions with Perl DBI, you need to have DBD::mysql version 1.2216 or newer. DBD::mysql 2.9003 or newer is recommended.

If you are using the MySQL 4.1 or newer client library, you must use DBD::mysql 2.9003 or newer.

Perl support is not included with MySQL distributions. You can obtain the necessary modules from http://search.cpan.org for Unix, or by using the ActiveState ppm program on Windows. The following sections describe how to do this.

Perl support for MySQL must be installed if you want to run the MySQL benchmark scripts. See Section 7.1.4, “The MySQL Benchmark Suite”.

2.13.1. Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and header files). Most installation methods install the necessary files. However, if you installed MySQL from RPM files on Linux, be sure that you've installed the developer RPM. The client programs are in the client RPM, but client programming support is in the developer RPM.

If you want to install Perl support, the files you need can be obtained from the CPAN (Comprehensive Perl Archive Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local MySQL server using the default username and password. (The default username is your login name on Unix, and ODBC on Windows. The default password is “no password.”) If you cannot connect to the server with those values (for example, if your account has a password), the tests fail. You can use force install DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before installing DBI.

It is also possible to download the module distributions in the form of compressed tar archives and build the modules manually. For example, to unpack and build a DBI distribution, use a procedure such as this:

  1. Unpack the distribution into the current directory:

    shell> gunzip < DBI-VERSION.tar.gz | tar xvf -
    

    This command creates a directory named DBI-VERSION.

  2. Change location into the top-level directory of the unpacked distribution:

    shell> cd DBI-VERSION
    
  3. Build the distribution and compile everything:

    shell> perl Makefile.PL
    shell> make
    shell> make test
    shell> make install
    

The make test command is important because it verifies that the module is working. Note that when you run that command during the DBD::mysql installation to exercise the interface code, the MySQL server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new release of MySQL, particularly if you notice symptoms such as that all your DBI scripts fail after you upgrade MySQL.

If you don't have access rights to install Perl modules in the system directory or if you want to install local Perl modules, the following reference may be useful: http://servers.digitaldaze.com/extensions/perl/modules.html#modules

Look under the heading “Installing New Modules that Require Locally Installed Modules.

2.13.2. Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

  1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

  2. Open a console window (“DOS window”).

  3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

    set HTTP_proxy=my.proxy.com:3128
    
  4. Start the PPM program:

    C:\> C:\perl\bin\ppm.pl
    
  5. If you have not previously done so, install DBI:

    ppm> install DBI
    
  6. If this succeeds, run the following command:

    install \
    ftp://ftp.de.uu.net/pub/CPAN/authors/id/JWIED/DBD-mysql-1.2212.x86.ppd
    

This procedure should work with ActiveState Perl 5.6 or newer.

If you cannot get the procedure to work, you should install the MyODBC driver instead and connect to the MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
  die "Got error $DBI::errstr when connecting to $dsn\n";

2.13.3. Problems Using the Perl DBI/DBD Interface

If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one of the following methods:

  • Compile the DBD::mysql distribution with perl Makefile.PL -static -config rather than perl Makefile.PL.

  • Copy libmysqlclient.so to the directory where your other shared libraries are located (probably /usr/lib or /lib).

  • Modify the -L options used to compile DBD::mysql to reflect the actual location of libmysqlclient.so.

  • On Linux, you can add the pathname of the directory where libmysqlclient.so is located to the /etc/ld.so.conf file.

  • Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to find. For example, if the linker cannot find libc because it is in /lib and the link command specifies -L/usr/lib, change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built (check the output from make for mysql.so when you compile the Perl client). The -L option should specify the pathname of the directory where libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL aren't both compiled with gcc. In this case, you can solve the mismatch by compiling both with gcc.

You may see the following error from DBD::mysql when you run the tests:

t/00base............install_driver(mysql) failed:
Can't load '../blib/arch/auto/DBD/mysql/mysql.so' for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm line 169.

This means that you need to include the -lz compression library on the link line. That can be done by changing the following line in the file lib/DBD/mysql/Install.pm:

$sysliblist .= " -lm";

Change that line to:

$sysliblist .= " -lm -lz";

After this, you must run make realclean and then proceed with the installation from the beginning.

If you want to install DBI on SCO, you have to edit the Makefile in DBI-xxx and each subdirectory. Note that the following assumes gcc 2.95.2 or newer:

OLD:                                  NEW:
CC = cc                               CC = gcc
CCCDLFLAGS = -KPIC -W1,-Bexport       CCCDLFLAGS = -fpic
CCDLFLAGS = -wl,-Bexport              CCDLFLAGS =

LD = ld                               LD = gcc -G -fpic
LDDLFLAGS = -G -L/usr/local/lib       LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib      LDFLAGS = -L/usr/local/lib

LD = ld                               LD = gcc -G -fpic
OPTIMISE = -Od                        OPTIMISE = -O1

OLD:
CCCFLAGS = -belf -dy -w0 -U M_XENIX -DPERL_SCO5 -I/usr/local/include

NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO5 -I/usr/local/include

These changes are necessary because the Perl dynaloader does not load the DBI modules if they were compiled with icc or cc.

If you want to use the Perl module on a system that doesn't support dynamic linking (such as SCO), you can generate a static version of Perl that includes DBI and DBD::mysql. The way this works is that you generate a version of Perl with the DBI code linked in and install it on top of your current Perl. Then you use that to build a version of Perl that additionally has the DBD code linked in, and install that.

On SCO, you must have the following environment variables set:

LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib

Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
    /usr/progressive/lib:/usr/skunk/lib
LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
    /usr/progressive/lib:/usr/skunk/lib
MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\
    /usr/skunk/man:

First, create a Perl that includes a statically linked DBI module by running these commands in the directory where your DBI distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Then you must install the new Perl. The output of make perl indicates the exact make command you need to execute to perform the installation. On SCO, this is make -f Makefile.aperl inst_perl MAP_TARGET=perl.

Next, use the just-created Perl to create another Perl that also includes a statically linked DBD::mysql by running these commands in the directory where your DBD::mysql distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Finally, you should install this new Perl. Again, the output of make perl indicates the command to use.